Language is fundamental to human communication, allowing individuals to express and exchange ideas, thoughts, and emotions. In early childhood, some children experience communication disorders that impede their ability to articulate words correctly, posing significant challenges to their learning and development. This issue is exacerbated in developing countries, where limited resources and a lack of technological tools hinder access to effective speech therapy. Traditional speech therapy remains vital, but the latest technological advancements have introduced robotic assistants to enhance therapy for communication disorders. Despite their potential, these technologies are often inaccessible in developing regions due to high production costs and a lack of sustainable manufacturing models. For these reasons, this paper presents “FONA,” a robotic assistant that employs rule-based expert systems to provide tactile, auditory, and visual stimuli. FONA supports children aged 3 to 6 in speech therapy by delivering exercises such as syllable production, word formation, and pictographic storytelling of various phonemes. Notably, FONA was successfully tested on children with cochlear implants, reducing the number of sessions required to produce isolated phonemes. The paper also introduces an innovative analysis of the Make To Order (MTO) manufacturing system for producing FONA in developing countries. This analysis explores two key perspectives: collaborative networks and entrepreneurship, offering a sustainable production model. In a pilot experiment, FONA significantly improved children’s attention spans, increasing the period by 17 min. Furthermore, the economic analysis demonstrates that producing FONA through collaborative networks can significantly reduce costs, making it more accessible to institutions in developing countries. The findings suggest that the project is viable for a five-year period, providing a sustainable and effective solution for addressing communication disorders in children.
Praxeology is the study of practice, i.e., human activity, primarily in the context of its rationality. The study of manager’s praxeological activity from the point of view of management theory is an important direction of modern science, since it contributes not only to improving the management effectiveness in an organization, but also to the development of new managerial concepts and techniques. In the article, the authors’ concept of praxeological managerial activity is proposed based on the analysis of existing scientific approaches to praxeology. An extended list of criteria for the manager’s praxeological activity efficiency was developed. These criteria include performance, productivity, accuracy of the decisions taken, purposefulness, reliability, innovativeness, quality, and ethics. The authors’ model of the manager’s praxeological activity includes the following elements: a subject (a manager), an object (a company, its staff and activities, etc.), motives (success, growth, profit, etc.), the goal (to ensure the effectiveness of the company’s activities), methods and tools (analysis, planning, organization, motivation, and control), process (praxeological activity), result (efficiency improvement), and reflexivity, correction and iteration. Within the framework of the model of praxeological managerial activity, the manager’s ability to influence the managed object (an organization, employees or the manager’s activities) is particularized. This influence should result in an increase in the employees’ performance, an increase in the managers’ performance, and an increase in the performance of the organization as a whole. The article will be of interest to specialists in the field of management, and corporate governance, as well as for anyone interested in the problems of effective management.
Teachers are instrumental in advancing the cognitive and motor skills of children with autism. Despite their importance, the incorporation of both educators and robotic aids in the educational frameworks of specialized schools and centers is infrequent. Extensive research has been conducted to evaluate the impact of robotic assistance on the learning outcomes for children with autism. This study investigates the effects of the Furhat robot on the educational experiences of autistic children in schools, analyzing its utility both with and without the presence of teachers. Interviews with educators were carried out to gauge the effectiveness of implementing Furhat robots in these settings. Data collected from sessions with autistic children were analyzed using ANOVA tests, offering insights into the Furhat Social Robot’s potential as a significant tool for fostering engagement and interaction. The findings highlight the robot’s effectiveness in enhancing social interaction and engagement, thereby contributing to the ongoing discussion on how social robots can improve the developmental progress and well-being of children with autism. Moreover, this paper underlines the innovative aspects of our proposed model and its wider implications. By presenting specific quantitative outcomes, our aim is to extend the reach of our findings to a broader audience. Ultimately, this research delineates significant contributions to the understanding of social robots, such as Furhat, in improving the overall well-being and developmental trajectories of children with autism.
Physical sampling of water on site is necessary for various applications like drinking water quality checking in lakes and checking for contaminants in freshwater systems. The use of water surface vehicles is a promising technology for monitoring and sampling water bodies, and they offer several advantages over traditional monitoring methods. This project involved designing and integrating a drone controller, water collection sampling contraption unit, and a surveillance camera system into a water surface vehicle (WSV). The drone controller unit is used to operate the boat from the starting location until the location of interest and then back to the starting location. The drone controller has an autopilot system where the operator can set a course and be able to travel following the path set, whereas the WSV will fight the external forces to keep itself in the right position. The water collection sampling unit is mounted onto WSV so when it travels to the location, it can start collecting and holding water samples until it returns to the start location. The field of view (FOV) surveillance camera helps the operator to observe the surrounding location during the operation. Experiments were conducted to determine the operational capabilities of the robot boat at the Ayer Keroh Lake. The water collection sampling contraption unit collected samples from 44 targeted areas of the lake. The comprehensive examination of 14 different water quality parameters were tested from the collected water samples provides insights into the factors influencing the pollution and observation of water bodies. The successful design and development of a water surface surveillance and pollution tracking vehicle marks the key achievements of this study. The developed collection and surveillance unit holds the potential for further refinement and integration onto various other platforms. They are offering valuable assistance in water body management, coastal surveillance, and pollution tracking. This system opens up new possibilities for comprehensive water body assessments, contributing to the advancement of sustainable and efficient water testing. Through careful sampling efforts, a thorough overview of the substances presents in the water collected from Ayer Keroh Lake has been compiled. This in-depth analysis provides important insights into the lake’s current condition, offering valuable information about its ecological health.
Copyright © by EnPress Publisher. All rights reserved.