In the era of artificial intelligence, smart clothing, as a product of the interaction between fashion clothing and intelligent technology, has increasingly attracted the attention and affection of enterprises and consumers. However, to date, there is a lack of focus on the demand of silver-haired population’s consumers for smart clothing. To adapt to the rapidly aging modern society, this paper explores the influencing factors of silver-haired population’s demand for smart clothing and proposes a corresponding consumer-consumption-need theoretical model (CCNTM) to further promote the development of the smart clothing industry. Based on literature and theoretical research, using the technology acceptance model (TAM) and functional-expressive-aesthetic consumer needs model (FEAM) as the foundation, and introducing interactivity and risk perception as new external variables, a consumer-consumption-need theoretical model containing nine variables including perceived usefulness, perceived ease of use, functionality, expressiveness, aesthetics, interactivity, risk perception, purchase attitude, and purchase intention was constructed. A questionnaire survey was conducted among the Chinese silver-haired population aged 55–65 using the Questionnaire Star platform, with a total of 560 questionnaires issued. The results show that the functionality, expressiveness, interactivity, and perceived ease of use of smart clothing significantly positively affect perceived usefulness (P < 0.01); perceived usefulness, perceived ease of use, aesthetics, and interactivity significantly positively affect the purchase attitude of the silver-haired population (P < 0.01); perceived usefulness, aesthetics, interactivity, and purchase attitude significantly positively affect the purchase intention of the silver-haired population (P < 0.01); functionality and expressiveness significantly positively affect perceived ease of use (P < 0.01); risk perception significantly negatively affects purchase attitude (P < 0.01). Through the construction and empirical study of the smart clothing consumer-consumption-need theoretical model, this paper hopes to stimulate the purchasing behavior of silver-haired population’s consumers towards smart clothing and enable them to enjoy the benefits brought by scientific and technological advancements, which to live out their golden years in comfort, also, promote the rapid development of the smart clothing industry.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Copyright © by EnPress Publisher. All rights reserved.