Since 2022, global geopolitical conflicts have intensified, and there has been a notable increase in the international community’s demand for currency diversification. This has created a new opportunity for the internationalization of the Renminbi (RMB). This paper examines the factors influencing the internationalization of the RMB, with a particular focus on its role as a unit of account, medium of exchange and store of value. These functions are considered in conjunction with the digital technological innovation represented by e-CNY. The methodology employed is based on the vector autoregression (VAR) model, Granger causality test and variance decomposition analysis. The Granger causality test indicates that digital technology innovation is not the primary driver of RMB internationalization at this juncture. The impulse response analysis and variance decomposition analysis revealed that the impact and direction of influence exerted by the various factors on RMB internationalization exhibit considerable discrepancies.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Tomato (Solanum lycopersicon L.) is a highly valued crop in the world, particularly in Nigeria with high nutritional and economic benefits. However, its production in Iwollo, Southeast Nigeria, is constrained by unfavorable weather conditions. To address this, a study was conducted at the Teaching and Research Farm, Department of Horticultural Technology, Enugu State Polytechnic, Iwollo, Southeast Nigeria to evaluate and select the best cultivar for high tunnel production using the Rank Summation Index. Completely Randomized Design with three replications was used, and six high-yielding cultivars, namely Roma VF, BHN-1021, Supremo, Pomodro, Money maker, and Iwollo local, were evaluated. Data were collected on key agronomic characters and analyzed with Analysis of Variance (ANOVA) at a 0.05 level of probability. There were significant differences in the number of leaves per plant, plant height, number of branches per plant, days to fruit maturity, fresh fruit weight, number of harvested fresh fruits per plant, and fresh fruit yield per plant among the cultivars. These characters that showed significant differences were ranked and summed up to obtain the Rank Summation Index (RSI) score. The results revealed that the Supremo cultivar had the lowest and best score (18). This suggests Supremo as the best cultivar for high tunnel tomato production in the study area, based on its superior performance across key agronomic traits.
Copyright © by EnPress Publisher. All rights reserved.