This study aims to guide future research by examining trends and structures in scholarly publications about digital transformation in healthcare. We analyzed English-language, open-access journal articles related to this topic from the Scopus database, irrespective of publication year. Using tools like Microsoft Excel, VOSviewer, and Scopus Analyzer, we found a growing research interest in this area. The most influential article, despite being recent, has been cited 836 times, indicating its impact. Notably, both Western and Eastern countries contribute significantly to this field, with research spanning multiple disciplines, including computer science, medicine, engineering, business, social sciences, and health professions. Our findings can help policymakers allocate resources to impactful research areas, prioritize multidisciplinary collaboration, and promote international partnerships. They also offer insights for technology investment, implementation, and policy decisions. However, this study has limitations. It relied solely on Scopus data and didn’t consider factors like author affiliations. Future research should explore specific collaboration types and the ethical, social, policy, and governance implications of digital transformation in healthcare.
One of the main concerns in computer science today is integrating the Internet of Things (IoT) into manufacturing processes. This trend could influence a country’s strategy and policy development regarding technological infrastructure. However, despite extensive research on the implementation of IoT in manufacturing, no study has yet focused on the growing research interest in this topic. Based on 2487 papers indexed in the Scopus database between 2013 and 2023, this bibliometric review examines current trends and patterns in IoT research in manufacturing. The literature was selected and screened using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. Data visualization was created using VOSviewer. The results show a notable increase in research papers centered around IoT in manufacturing. The findings reveal patterns and trends in IoT research publications in the manufacturing sector, author collaboration networks, country collaboration networks, and both established and newly trending topics surrounding IoT in the manufacturing industry.
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Copyright © by EnPress Publisher. All rights reserved.