The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the quality, physiological and biochemical indexes of Cucumber Fruits during storage were studied by using the quadratic regression orthogonal rotation combination design. The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the chilling injury, hardness, weightlessness rate, polyphenol oxidase (PPO), catalase (CAT), peroxidase (POD), H2O2, super oxygen anion free radical (O2-), ASA and GSH were determined. The results showed that heat treatment could inhibit chilling injury, while heat treatment combined with 4 ℃ low temperature storage could effectively inhibit the decline of fruit hardness and weight loss rate, delay the increase of peroxidase (POD) and polyphenol oxidase (PPO) activities, inhibit the increase of H2O2 and superoxide anion free radical O2- and significantly inhibit the browning of cucumber, delay the decline of ascorbic acid and maintain the content of GSH, it was beneficial to adjust the balance of active oxygen system. The results showed that under the storage condition of 4 ℃, the hot water treatment condition of cucumber was 39.4 ℃ and 24.3 min, which could delay the senescence of cucumber fruit and better maintain the quality of cucumber fruit.
Open pitaya (Stenocereus thurberi) flowers were marked at 10, 20, 30 and 40 days after floration (DAF). When fruit were formed, they were collected from each of the dates with the objective of evaluating physical, physiological and quality changes before and after harvest. In fruits with different DAF, the analyses of fruit size (diameter and length), weight, density, firmness, color in pulp and peel (L*, a* and b*), respiration rate (CO2) and ethylene production were carried out. In the case of ripe and overripe fruit, in addition to the variables mentioned above, pH, percentage of total soluble solids TSS and total acidity (% citric acid equivalents) were evaluated. Fruit with 40 DAF were stored for up to 14 days at 25 ℃ and 80% RH to evaluate daily changes in respiration rate and ethylene production. It was found that during development the fruit tended to grow more in length than in diameter. In color, the best indicators of changes during fruit development were the parameters L* and b* for peel and for flesh L* and a*. For firmness in pitaya fruits, no significant differences were found with the methodology used. Changes in ethylene production and respiration rate during storage and development showed the usual behavior of climacteric fruits. Pitaya fruits with 40 FDD presented quality characteristics similar to those accepted by the consumer for this type of fruit. It is concluded that it is possible to evaluate the different stages of development in DDF of pitaya fruit based on the changes of the color space variables L*, a* and b*, in addition to the fact that the fruit follows the classical climacteric behavior.
With the purpose of identifying the characteristics of variation in fruit size and seed production (potential and efficiency) of Cedrela odorata L. between sites and progenies established in the ejido La Balsa, municipality of Emiliano Zapata, Veracruz, fruits were harvested from 20 trees in February 2013, preserving the identity of each one. Fruit length and width were measured, seed was extracted and developed and aborted seeds were counted to calculate Seed Production Potential (SPP) and Seed Efficiency (SE). The results showed significant differences between sites and between progenies and for fruit length between sites. The mean values found were: 32.52 mm (fruit length), 18.73 mm (fruit width), 39.9 seeds per fruit (SPP) and 57.51% (SE). The seed of this species for its use should be selected taking into account the production characteristics of crops and outstanding individual trees, in addition, due to the current regulatory restrictions on seed collection, the establishment of trials and plantations for germplasm production is a viable option for forest management of the species.
Cucumber (Cucumis sativus L.) is a tropical vegetable and a source of vitamins such as K, C, and B. It is commonly grown and sold for daily consumption, but picking the right fruit size is more profitable. Therefore, a method for estimating the fruit weight is highly recommended. This paper aimed to determine the dimensions of cucumber fruit based on its usual harvesting size and to establish a model to show the relationship between fruit weight, fruit length, and fruit diameter. Cucumber was planted in the experimental field belonging to the Faculty of Agricultural Biosystems Engineering, Royal University of Agriculture, Phnom Penh, Cambodia, from January to June 2022. In the study, 48 market-size fruits were randomly selected from the plots to measure their weight, length, and diameter. The result shows that fruit length and fruit diameter had a positive relationship (P < 0.001; R = 0.70). Fruit weight was 3.38 fruit length × fruit diameter (P <0.001; R = 0.95). Nevertheless, L/D ratio negatively affected fruit weight, when it exceeded 3:1. Fruit weight was greater than 100 g when fruit diameter was over 4 cm and fruit length was over 10 cm. Therefore, when picking cucumber fruits, one must consider fruit length and diameter to be profitable. Further studies will focus on measuring cucumber fruit already available on the market to understand more about actual consumer preferences.
Hydroponics is a modern agricultural system that enables year-round plant growth. Biochar, derived from apple tree waste, and humic acid were investigated as a replacement for the Hoagland nutrient solution to grow strawberries in a greenhouse with three replications. Growth parameters, such as leaf area, the average number of fruits per plant, maximum fruit weight, and the weight of fresh and dry fruits, were measured. A 50% increase in fresh and dry fruit weight was observed in plants grown using biochar compared to the control. Additionally, the use of Hoagland chemical fertilizer led to a 25% increase in both fresh and dry weight. There was a 65% increase in the number of fruits per plant in the biochar-grown sample compared to the control. Moreover, biochar fertilizer caused a 100% increase in maximum fruit weight compared to the control and a 27% increase compared to the Hoagland chemical fertilizer. Biochar had a higher pH compared to the Hoagland solution, and such pH levels were conducive to strawberry plant growth. The results indicate that biochar has the potential to enhance the size and weight of fruits. The findings of the study demonstrate that biochar, when combined with humic acid, is a successful organic hydroponic fertilizer that improves the quality and quantity of strawberries. Moreover, this approach enables the more efficient utilization of garden waste.
Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
Copyright © by EnPress Publisher. All rights reserved.