This article describes a classification tool to cluster SARAL/AltiKa waveforms. The tool was made using Python scripts. Radar altimetry systems (e.g., SARAL/AltiKa) measures the distance from the satellite centre to a target surface by calculating the satellite-to-surface round-trip time of a radar pulse. An altimeter waveform represents the energy reflected by the earth’s surface to the satellite antenna with respect to time. The tool clusters the altimetric waveforms data into desired groups. For the clustering, we used evolutionary minimize indexing function (EMIF) with k-means cluster mechanism. The idea was to develop a simple interface which takes the altimetry waveforms data from a folder as inputs and provides single value (using EMIF algorithm) for each waveform. These values are further used for clustering. This is a simple light weighted tool and user can easily interact with it.
Using the rank scale rule, taking 47 major port cities in China from 2001 to 2015 as research samples, this paper discusses the rank scale characteristics and hierarchical structure of coastal port city system from a multi-functional perspective, and divides the coupling type of multi-functional development based on shipping logistics. The research shows that: 1) from 2001 to 2015, the scale-free area of manufacturing function order scale distribution in the coastal port city system appeared bifractal structure, the hierarchical segmentation characteristics appeared, and the other functions were single fractal; From the perspective of long-term evolution, only the order and scale distribution of shipping logistics function has developed from centralization to equilibrium, while the business function, manufacturing function (scale-free region I), modern service function and population distribution function are in a centralized situation. 2) The hierarchical structure of coastal port city system has gradually changed from pyramid structure to spindle structure, and generally formed five levels: national hub, regional hub, regional sub center, regional node and local node. 3) From the perspective of multi-functional coupling types, the traditional functions of port cities are generally ahead, while the high-end service functions lag behind, and the improvement speed of urban functions is slow and tends to be flat, indicating that the multi-functional development of China’s coastal port cities is still at a low level, and the industrial system structure needs to be further optimized. 4) From the perspective of port cities at different levels, the functions of regional hub cities and regional sub central cities are in the stage of rapid growth; regional and local node cities are still in the growth stage of traditional functions such as industry and commerce.
One functional class is described in terms of one-sided modulus of continuity and the modulus of positive (negative) variation on which there
is a uniform convergence of the truncated cardinal Whittaker functions.
Based on 898 English documents and 363 Chinese documents citing the Rising of Network Society, it studied that the knowledge contribution of citation content analysis and citation context analysis methods, and the knowledge contribution of Chinese and foreign quotations to human geography. The study found that “mobile space” is the most quoted theoretical view in domestic and foreign literature, and the proportion of domestic research is significantly higher than foreign research; the focus of domestic and foreign research focuses on the external spatial form and its transformation, while foreign research pays more attention on the internal spatial dynamics of network society and three types of knowledge contributions, reflecting the influence of “network social theory” on human geography. Among them, critical references reveal the shortcomings of “network social theory” point out the abstraction of “spatial duality” the importance of local space, and the limitations of research data, methods, and time background, which provides new enlightenment for the future application and innovation of “network social theory” in the field of human geography.
First principles simulation studies using the density functional theory have been performed on (9, 0) Zigzag Singlewalled Carbon Nanotube (SWCNT) to investigate its electronic, optical and thermodynamic properties using CASTEP (Cambridge Sequential Total Energy Package) and DFTB (Density Functional based Tight Binding) modules of the Material Studio Software version 7.0. Various functionals and sub-functionals available in the CASTEP Module (using Pulay Density Mixing treatment of electrons) and various eigen-solvers and smearing schemes available in the DFTB module (using smart algorithm) have been tried out to chalk out the electronic structure. The analytically deduced values of the band gap obtained were compared with the experimentally determined value reported in the literature. By comparison, combination of Anderson smearing scheme and standard diaogonalizer produced best results in DFTB module while in the CASTEP module, GGA (General Gradient approximation) functional with RPBE (Revised-perdew-Burke-Ernzerh) as Sub-functional was found to be the most consistent. These optimized parameters were then used to determine various electronic, optical and thermodynamic properties of (9, 0) Singlewalled Nanotube. (9, 0) Singlewalled Nanotube, which is extensively being used for sensing NH3, CH4 & NO2, has been picked up in particular as it is reported to exhibit a finite energy band gap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies.
Broccoli has been consumed around the world in various ways; either raw, blanched, frozen, dehydrated or fermented; however, functional foods and nutraceuticals are currently being designed and marketed from broccoli, through the extraction of compounds such as sulforaphane, which according to several studies and depending on its bioavailability has a protective effect on some types of cancer. Likewise, several food technologies are reported to seek to offer innovative foods to increasingly careful and critical consumers, ensuring that they retain their nutritional and sensory attributes even after processing and that they are also safe. In this sense, studies on the effect of processing on compounds of interest to health are of great relevance. Therefore, this article presents an overview on the study of traditionally consumed broccoli and the design of new products from the use of agro-industrial residues that, due to their high content of fiber and fitochemical compounds, can benefit the quality of life of the human population.
Copyright © by EnPress Publisher. All rights reserved.