The role of agriculture in greenhouse gas emissions and carbon neutrality is a complex and important area of study. It involves both carbon sequestration, like photosynthesis, and carbon emission, such as land cultivation and livestock breeding. In Shandong Province, a major agricultural region in China, understanding these dynamics is not only crucial for local and national carbon neutrality goals, but also for global efforts. In this study, we utilized panel data spanning over two decades from 2000 to 2022 and closely examined agricultural carbon dynamics in 16 cities of the Shandong Province. The method from the Intergovernmental Panel on Climate Change (IPCC) was used for calculating agricultural carbon sinks, carbon emissions, and carbon surplus. The results showed that (1) carbon sink from crops in the Shandong Province experienced growth during the study period, closely associated with the rise in crop yields; (2) a significant portion of agricultural carbon emissions was attributable to gastrointestinal fermentation in cattle, and a reduction in the number of stocked cattle led to a fall in overall carbon emissions; (3) carbon surplus underwent a significant transition in 2008, turning from negative to positive, and the lowest value of carbon surplus was noticed in 2003, with agriculture sector reaching the carbon peak; (4) the spatial pattern of carbon surplus intensity distinctly changed before and after 2005, and from 2000 to 2005, demonstrating spatial aggregation. This research elucidates that agriculture in Shandong Province achieved carbon neutrality as early as 2008. This is a pivotal progression, as it indicates a balance between carbon emissions and absorption, highlighting the sector’s ability in maintaining a healthy carbon equilibrium.
Housing is one of the most significant components of sustainable development; hence, the need to come up with sustainable housing solutions. Nevertheless, the sales of houses are steadily falling due to the unaffordability of houses to many people. Based on the expanded community acceptance model, this research examines the relationships between sustainable housing and quality of life with the moderating factors of knowledge, technology, and innovation in Shenzhen. Additionally, it aims to delineate the principal dimensions influencing quality of life. The study employs purposive sampling and gathers data from residents of Shenzhen via a Tencent-distributed survey. Analysis was conducted using Smart Partial Least Squares (PLS) 4.0. Results indicate a positive correlation between economic sustainability in housing and quality of life. Contrarily, the social and environmental aspects exhibited negligible impacts on quality of life. Knowledge, technology, and innovation were identified as significant moderators in the correlation among all three sustainable housing dimensions and quality of life. The findings are anticipated to enhance understanding of the perceived impacts of sustainable housing on quality of life in Shenzhen and elucidate the role of knowledge, technology, and innovation in fostering this development.
This study evaluates the sustainability and ethical practices of Kerry Logistics Network Limited (KLN), a prominent logistics service provider headquartered in Hong Kong. Using normative ethical theories, stakeholder analysis, and the Circle of Sustainability framework, this research examines KLN’s alignment with global sustainability standards, particularly the United Nations Sustainable Development Goals (SDGs). The findings reveal that KLN has achieved significant milestones in environmental management, such as reducing greenhouse gas emissions by 11% from 2021 to 2022 through the deployment of electric trucks and incorporating renewable energy in warehouse operations. KLN has also enhanced social responsibility and governance practices by implementing fair labor policies and establishing a rigorous code of conduct, ensuring compliance with ethical guidelines across its supply chain. However, the study identifies areas for improvement, including biodiversity actions, battery recycling processes, and transparency in stakeholder engagement. Emphasizing the importance of third-party validation, this paper underscores KLN’s leadership in the logistics industry and provides insights for other companies aiming to improve sustainability performance through comprehensive, verifiable practices.
To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s energy- and transportation-related greenhouse gas reduction plan. The number of passengers estimated during the feasibility study period was used to calculate the greenhouse gas reduction effect of project implementation. Most of the estimated numbers exceed the actual number of passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The variables affecting the number of passengers were the population in the vicinity of stations, offices, and shopping malls, the number of bus lines that serve the area, and the length of the road. The DDRM accurately predicted the number of passengers within 10% of the observed change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030.
Copyright © by EnPress Publisher. All rights reserved.