Creative cities as a study discipline have garnered extensive attention and research in theory and practice as a practical approach to urban revitalization and sustainable development. This study conducted a systematic review of academic research on creative cities. Utilizing the visual analysis tools Citespace and VOSviewer, a comprehensive analysis was performed on 570 relevant articles from the Web of Science database. This study analyzed the most influential publications, authors, journals, institutions, and countries within the sample. The investigation spans various disciplinary domains, including geography, environment, culture, and others. Additionally, an exploration of the structure and characteristics of co-cited references was undertaken to enhance our understanding of the theoretical foundations of creative cities research further. Among these, the focal points of the study encompass urban development, urban policies, and the challenges faced. Finally, through co-occurrence analysis of keywords and examining the evolutionary process, the study forecasted that future trends will focus on the practical application of cities to enhance the urban image and improve urban governance from multi-dimensional perspectives such as creativity-related cultural places, public art, and so forth, exploring novel models of creative cities from case to universal. The results of this study can support scholars in grasping the development trends and exploring focal points.
This paper analyzes the characteristics and influence mechanisms of financial support for China’s strategic emerging industries. Using a sample of 356 listed companies across nine major industries, we conduct an in-depth analysis of the efficiency of financial support and its influencing factors. In addition, this paper analyzes the influence mechanism of financial support for strategic emerging industries based on the relevant theory of financial support for industry development. It clarifies the internal and external influencing factors. Based on the theoretical analysis, a two-stage empirical investigation was conducted: The data of 356 listed companies in strategic emerging industries from 2010 to 2022 were selected as a sample, and the data envelopment analysis (DEA) method was applied to measure efficiency. The influencing factors were then analyzed using a Tobit regression and an intermediate effects test.
This study evaluated the efficiency and productivity of the manufacturing industries of Singapore. Singapore is one of the world’s most competitive countries and manufacturing giants. All 21 manufacturing industries as classified by Singapore’s Department of Statistics were included in the study as decision-making units (DMUs). Using the Malmquist DEA on data spanning 2015–2021, we found that excerpt for the Paper and Paper product industry, all industries recorded positive total factor productivity (TFP). TFP ranged from 0.977 to 1.481. In terms of technical efficiency, 14 out of 21 industries showed positive efficiency change. The highest TFP was recorded in 2020 and the lowest in 2016. By measuring and improving efficiency, industries in Singapore can achieve cost savings, increase output, and enhance their competitiveness in the global marketplace. In addition, efficiency measurement can help policymakers identify potential areas for improvement and develop targeted policies to promote sustainable economic growth. Given these benefits, performance measurement is inevitable for industries and policymakers in Singapore to achieve economic objectives. Manufacturing industries need to find ways to manage the size and scale of operations as we flag this as an area for improvement.
This paper aims to contribute with a literature review on the use of AI for cleaner production throughout industries in the consideration of AI’s advantage within the environment, economy, and society. The survey report based on the analysis of research papers from the recent literature from leading database sources such as Scopus, the Web of Science, IEEE Xplore, Science Direct, Springer Link, and Google Scholar identifies the strategic strengths of AI in optimizing the resources, minimizing the carbon footprint and eradicating wastage with the help of machined learning, neural networks and predictive analytics. AI integration presents vast aspects of environmental gains, including such enhancements as a marked reduction concerning the energy and materials consumed along with enhanced ways of handling the resulting waste. On the economic aspect, AI enhances the processes that lead to better efficiency and lower costs in the market on the other hand, on the social aspect, the application of any AI influences how people are utilized as workers/clients in the community. The following are some of the limitations towards AI adoption as proposed by the review of related literature; The best things that come with AI are yet accompanied by some disadvantages; there are implementation costs, data privacy, as well as system integration that may be a major disadvantage. The review envisages that with the continuation of the AI development in the following years, the optic is going to be the accentuation on the enhancement of the process of feeding the data in real-time mode, IoT connections, and the implementation of the proper ethical approaches toward the AI launching for all segments of the society. The conclusions provide precise suggestions to the people working in the industry to adopt the AI advancements appropriately and at the same time, encourage the lawmakers to create favorable legal environments to enable the ethical uses of AI. This review therefore calls for more targeted partnerships between the academia, industry, and government to harness the full potential of AI for sustainable industrial practices worldwide.
This research explores the advancement of Artificial Intelligence (AI) in Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role in mitigating the global incidence of occupational incidents and diseases, which result in approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in completely preventing workplace incidents, primarily due to limitations in human-operated risk assessments and management. The integration of AI technologies has been instrumental in automating hazardous tasks, enhancing real-time monitoring, and improving decision-making through comprehensive data analysis. Specific AI applications discussed include drones and robots for risky operations, computer vision for environmental monitoring, and predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are enhancing training protocols, significantly improving both the safety and efficiency of workers. Various studies supporting the effectiveness of these AI applications indicate marked improvements in risk management and incident prevention. By transitioning from reactive to proactive safety measures, the implementation of AI in OHS represents a transformative approach, aiming to substantially reduce the global burden of occupational injuries and fatalities in high-risk sectors.
Copyright © by EnPress Publisher. All rights reserved.