The mining sector faces a complex dilemma as an economic development agent through social upliftment in places where mining corporations operate. Resource extraction is destructive and non-renewable, making it dirty and unsustainable. To ensure corporate sustainability, this paper examines the effects of knowledge management (KM), organizational learning (OL), and innovation capability (IC) on Indonesian coal mining’s organizational performance (OP). We used factor and path analysis to examine the relationships between the above constructs. After forming a conceptual model, principal component analysis validated the factor structure of a collection of observed variables. Path analysis examined the theories. The hypothesized framework was confirmed, indicating a positive association between constructs. However, due to mining industry peculiarities, IC does not affect organizational performance (OP). This study supports the importance of utilizing people and their relevant skills to improve operational performance. The findings have implications for managers of coal mining enterprises, as they suggest that KM and OL are critical drivers of OP. Managers should focus on creating an environment that facilitates knowledge sharing and learning, as this will help improve their organizations’ performance.
Data mining technology is a product of the development of the new era. Unlike other similar technologies, data mining technology is mainly committed to solving various application problems, and the main means of solving problems are to use big data technology and machine learning algorithms. Simply put, data mining technology is like panning for gold in the sand, searching for useful information among massive amounts of information. Data mining technology is widely applied in various fields, such as scientific research and business, and also has its shadow in the education industry. Currently, major universities are applying data mining technology to teaching quality evaluation. This article first explains the impact of data mining technology on the education industry, and then specifically discusses the application of data mining technology in the evaluation of teaching quality in universities.
The mining industry significantly impacts the three pillars of sustainable development: the economy, the environment, and society. Therefore, it is essential to incorporate sustainability principles into operational practices. Organizations can accomplish this through knowledge management activities and diverse knowledge resources. A study of 300 employees from two of the largest mining corporations in South Kalimantan, Indonesia, found that four out of five elements of knowledge management—green knowledge acquisition, green knowledge storage, green knowledge application, and green knowledge creation—have a direct impact on the sustainability of businesses. The calculation was determined using Structural Equation Modelling (SEM). However, the study also found that the influence of collectivist cultural norms inhibits the direct effect of green knowledge sharing on corporate sustainable development. The finding suggests that companies operating in collectivist cultures may need to take additional measures to encourage knowledge sharing, such as rewarding employees for sharing their expertise on green initiatives, supportive organizational culture, clear expectations, and opportunities for social interaction.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
The study evaluates to what extent logistics performance and its components impact Vietnam’s bilateral export value. The augmented Gravity model is applied on panel data in the period from 2010 to 2018. Logistics efficiency is measured by Logistic performance index (LPI) and its sub-indices developed by the World Bank. A variety of diagnostic tests and estimation methods are employed to ensure the stability of the results. The main findings confirm that all explanatory variables demonstrate the expected signs, and aggregate logistics performance and its sub-indices have positive impacts on Vietnam’s export flows, with the magnitude of logistics impacts is greater than other factors in the research model. Among LPI components of Vietnam, Ease of arranging shipments index is the most influential factor on exports, followed by Infrastructure, Timeliness, and Quality of logistics services. These export’s effects are also identified by partners’ LPI indicators namely Quality of logistics services, Customs, Infrastructure, and Tracking and tracing.
Copyright © by EnPress Publisher. All rights reserved.