With the acceleration of economic development and urban construction, urban security accidents have occurred around the world with alarming frequency, causing serious casualties and economic losses. Urban security planning and management as emerging areas of research have drawn widespread attention. For city development plans, urban security planning and management have become one of major topics. This paper first outlines the principles of urban security planning and management, combined with the construction of a digital and intelligent platform for urban emergency management. This research then analyzes the core technology and equipment support system of urban security management and its practical application. It also presents a new model based on urban security planning and management, followed by examples of its application in some mega infrastructure development for security planning and design (for example, Singapore Changi Airport and Shanghai Hongqiao Airport Transportation Hub). Additionally, a blast protection concept of urban security planning and management is provided.
Infectious diseases often occur, especially as diseases such as COVID-19 have claimed many lives in the years between 2019–2021. That’s why it’s called COVID-19, considering that this infectious disease outbreak started in 2019, and its consequences and effects are devastating. Like other countries’ governments, the Indonesian government always announces the latest data on this infectious disease, such as death rates and recoveries. Infectious diseases are transmitted directly through disease carriers to humans through infections such as fungi, bacteria, viruses and parasites. In this research, we offer a contagious illness monitoring application to help the public and government know the zone’s status so that people are more alert when travelling between regions. This application was created based on Web Application Programming Interface (API) data and configured on the Google Map API to determine a person’s or user’s coordinates in a particular zone. We made it using the prototype method to help users understand this application well. This research is part of the Automatic Identification System (AIS) research, where the use of mobile technology is an example of implementation options that can be made to implement this system.
Recently, carbon nanocomposites have garnered a lot of curiosity because of their distinctive characteristics and extensive variety of possible possibilities. Among all of these applications, the development of sensors with electrochemical properties based on carbon nanocomposites for use in biomedicine has shown as an area with potential. These sensors are suitable for an assortment of biomedical applications, such as prescribing medications, disease diagnostics, and biomarker detection. They have many benefits, including outstanding sensitivity, selectivity, and low limitations on detection. This comprehensive review aims to provide an in-depth analysis of the recent advancements in carbon nanocomposites-based electrochemical sensors for biomedical applications. The different types of carbon nanomaterials used in sensor fabrication, their synthesis methods, and the functionalization techniques employed to enhance their sensing properties have been discussed. Furthermore, we enumerate the numerous biological and biomedical uses of electrochemical sensors based on carbon nanocomposites, among them their employment in illness diagnosis, physiological parameter monitoring, and biomolecule detection. The challenges and prospects of these sensors in biomedical applications are also discussed. Overall, this review highlights the tremendous potential of carbon nanomaterial-based electrochemical sensors in revolutionizing biomedical research and clinical diagnostics.
The article reveals the problems of the transition to a “green” economy based on sustainable technological changes, which are caused by global ecological pollution of the ecosystem, which leads to warming and ecological changes and the insufficiency of the natural resource potential to meet the needs of the population of the planet, which does not contribute to development. The essence of the study is to determine the impact of a green economy on economic growth and development, in which natural assets continue to provide resources and environmental services. It is shown that the green economy provides a practical and flexible approach to achieving concrete, measurable progress in all its economic and environmental principles, while at the same time fully taking into account the social consequences of greening the dynamics of economic growth. Green economy strategies aim to ensure that natural assets can fully realize their economic potential in a sustainable manner. This potential includes the provision of vital life support services—clean air and water, as well as the sustainable biodiversity needed to support food production and human health. Natural assets cannot be replaced indefinitely, so the policy of the green economy should take this into account. It is characterized that the green economy provides a practical and flexible approach to achieving concrete, measurable progress in all its economic and environmental principles, while at the same time fully taking into account the social consequences of greening the dynamics of economic growth. The problems of the post-war revival of Ukraine’s economy are systematized and proposals for their solution are substantiated, which is the scientific contribution of the authors to the coverage of this problem. The global problems of the transition to a green economy, which are closely related to Ukrainian realities, are revealed. The practical content is determined by the fact that the theoretical and methodological provisions, conclusions and scientific and practical recommendations constitute the scientific basis for the development of a new holistic concept of the development of the green economy of Ukraine. The conclusions that it is the “green” economy that is able to most closely link the ecological and economic aspects of the national economy, acting as a key direction for ensuring the sustainable “green” development of the region and the state as a whole, actualize the prospects of creating a green economy in Ukraine and become necessary and quite achievable in the post-war period.
Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
Copyright © by EnPress Publisher. All rights reserved.