The Malaysian government’s efforts to promote solar photovoltaic (PV) usage among households face a challenge due to its low adoption rate. This study delves into the factors influencing the exponential adoption of solar PV electricity generation among landed residential property owners in Malaysia. The research aims to comprehensively examine the predictors influencing the adoption of solar PV systems among Malaysian households. Hence, the study employs an enhanced Theory of Planned Behavior framework, integrating sustainable energy security dimensions such as availability, affordability, efficiency, acceptability, regulation, and governance. The sample comprised 556 Malaysian residents who owned and resided in the landed properties. The home locations where at least one solar PV installation existed within a residential street. Snowball sampling was employed through referrals, leveraging social and community networks. Collected data was analyzed using the partial least squares structural equation modeling. Attitude, affordability, and acceptability emerged as pivotal factors significantly impacting the intention to use solar PV systems among Malaysian households. This research not only enriches academic discourse but also offers practical implications for policymakers, guiding the formulation of targeted strategies to promote sustainable energy practices and facilitate the widespread adoption of solar PV systems in Malaysia.
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Copyright © by EnPress Publisher. All rights reserved.