This study analyzes the interaction between legitimacy, innovation, uncertainty, and electric vehicle (EV) purchase intention in Spain, Portugal, Italy, and Greece. Using partial least squares structural equation modeling (PLS-SEM) and data from 2016 to 2023, the relationships between these key variables are assessed. The results show that legitimacy has a positive impact on purchase intention, while innovation influences legitimacy but does not directly affect purchase intention. Uncertainty moderates these relationships in complex ways. The findings suggest that enhancing the perception of legitimacy is crucial to increase EV purchase intention, and strategies promoting innovation and managing uncertainty can improve market acceptance.
Energy systems face serious difficulties due to economic policy uncertainty, which affects consumption trends and makes the shift to sustainability more difficult. While adjusting for economic growth and carbon emissions, this study examines the dynamic relationship between economic policy uncertainty and energy consumption (including renewable and nonrenewable) in China from 1985Q1 to 2023Q4. The research reveals the frequency-specific and time-varying relationships between these variables by employing sophisticated techniques such as Wavelet Cross-Quantile Correlation (WCQC) and Partial WCQC (PWCQC). Economic policy uncertainty and energy consumption do not significantly correlate in the short term; however, over the long term, economic policy uncertainty positively correlates with renewable energy consumption at medium-to-upper quantiles, indicating that it may play a role in encouraging investments in sustainable energy. On the other hand, EPU has a negative correlation with nonrenewable energy usage at lower quantiles, indicating a slow move away from fossil fuels. These results are confirmed by robustness testing with Spearman-based WCQC techniques. The study ends with policy recommendations to maximize economic policy uncertainty’s long-term impacts on renewable energy, reduce dependency on fossil fuels, and attain environmental and energy sustainability in China.
The paper analyzes the corporate carbon emissions and GDP contributions of the top ten companies by turnover for 2020–2023 in Germany, South Korea, China and the United Kingdom. Focusing on Scope 1, 2, and 3, the study explores the contribution of these companies to carbon intensity across different sectors and economies. The analysis shows that there are significant gaps in carbon efficiency, with the UK’s and Germany’s firms emitting the lowest emissions per unit of GDP contribution, followed by China and South Korea. Additionally, the study further examines the impact of Economic Policy Uncertainty on both firm carbon intensity and economic productivity. While EPU is positively associated with GDP contributions, its impact on emissions is nuanced. Firms apparently respond to policy uncertainty by increasing energy efficiency in direct (Scope 1) and energy-related (Scope 2) emissions but find it more difficult to manage supply chain emissions (Scope 3) in that case. The results point out the critical role of comprehensive ESG reporting frameworks in enhancing transparency and addressing Scope 3 emissions, which remain the largest and most volatile component of corporate carbon footprints. The paper then emphasizes the importance of standardized ESG reporting and bespoke policy intervention for promoting sustainability, especially in carbon-intensive industries. This research contributes to the understanding of how industrial and policy frameworks affect carbon efficiency and economic growth in different national contexts.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
Copyright © by EnPress Publisher. All rights reserved.