Objective: To describe magnetic resonance imaging (MRI) findings of the brain in patients younger than 65 years who were studied by transcranial Doppler (TCD) with microbubble contrast, with a history of cryptogenic cerebrovascular accident (CVA) and suspected patent foramen ovale (PFO).
Materials and methods: This retrospective cross-sectional study included patients of both sexes, younger than 65 years of age.
Results: Our sample (n = 47.47% male and 53% female, mean age is 42 years) presented high-intensity transient signals (HITS) positive in 61.7% and HITS-negative in 38.3%. In HITS-positive patients, lesions at the level of the subcortical U-brains, single or multiple with bilaterally symmetrical distribution, predominated. In patients with moderate HITS, lesions in the vascular territory of the posterior circulation predominated.
Conclusion: In patients younger than 65 years with cryptogenic stroke and subcortical, single or multiple U-shaped lesions with bilateral and symmetrical distribution, a PFO should be considered as a possible cause of these lesions.
Introduction: Given the heterogeneous nature and inherent complexity of forensic medical expertise, the expert (medical professional or related areas) must make the best use of the technical and technological tools at his disposal. Imaging, referring to the set of techniques that allow obtaining images of the human body for clinical or scientific purposes, in any of its techniques, is a powerful support tool for establishing facts or technical evidence in the legal field. Objective: To analyze the use of magnetic resonance and computed tomography in postmortem diagnosis. Methodology: information was searched in the databases PubMed, Science Direct, Springer Journal and in the search engine Google Scholar, using the terms “X-Ray Computed Tomography”, “Magnetic Resonance Spectroscopy”, “Autopsy” and “Forensic Medicine” published in the period 2008–2015. Results: MRI is useful for the detailed study of soft tissues and organs, while computed tomography allows the identification of fractures, calcifications, implants and trauma. Conclusions: In the reports found in the literature search, regarding the use of nuclear magnetic resonance and computed tomography in postmortem cases, named by the genesis of the trauma, correlation was found between the use of imaging and the correct expert diagnosis at autopsy.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
Quartz sand was used as bed material in a small fluidized bed reactor with 1 kg/h feed. Corn straw powder with particle size of 20–40 mesh, 40–60 mesh, 60–80 mesh and 80–120 mesh was used as raw material for rapid pyrolysis at reaction temperatures of 400 °C, 450 °C, 500 °C and 550 °C. The bio-oil obtained after liquefaction of pyrolysis gas was analyzed. The variation trend of bio-oil composition in pyrolysis of corn straw powder with different reaction temperatures and raw material sizes was compared. The results show that: (1) the content of 3-hydroxyl-2-phenyl-2-acrylic acid in bio-oil increases with the decrease of raw material particle size, but it is less at 450 °C; (2) with the increase of reaction temperature, the content of hydroxyacetaldehyde in bio-oil increases at first and then decreases: the content of hydroxyacetaldehyde in bio-oil is the highest at 500 °C when the particle size is 20–40 mesh, and the highest at 450 °C with the other three particle sizes. Compared with other particle sizes, raw material with the particle size of 60–80 mesh is not conducive to the formation of aldehyde compounds; (3) the reaction temperature of 500 °C and the particle size of 60–80 mesh of raw materials are more conducive to the formation of phenolic compounds in bio-oil; (4) the ester compounds with particle size of 20–40 mesh in bio-oil is 20% higher than that of other particle sizes; (5) the reaction temperature and the particle size of raw materials had no significant effect on the formation of ketones, alcohols and alkane compounds in bio-oils.
Copyright © by EnPress Publisher. All rights reserved.