Climate change is an important factor that must be considered by designers of large infrastructure projects, with its effects anticipated throughout the infrastructure’s useful life. This paper discusses how engineers can address climate change adaptation in design holistically and sustainably. It offers a framework for adaptation in engineering design, focusing on risk evaluation over the entire life cycle. This approach avoids the extremes of inaction and designing for worst-case impacts that may not occur for several decades. The research reviews case studies and best practices from different parts of the world to demonstrate effective design solutions and adjustment measures that contribute to the sustainability and performance of infrastructure. The study highlights the need for interdisciplinary cooperation, sophisticated modeling approaches, and policy interventions for developing robust infrastructure systems.
The article is devoted to the issues of political and legal regulation of climate adaptation in the regions of the Russian Federation. Against the background of the adopted federal national adaptation plan, regions are tasked with identifying key areas of activity taking into account natural-climatic, demographic, environmental and technological specifics. The authors focus on the similarities and differences of the presented adaptation plans, emphasizing that work to improve this system continues within the framework of Russia’s international obligations. The Arctic regions deserve special attention, as they also differ from each other both in the selected climate adaptation activities (from ecology to energy saving) and in their number. This review provides a clear picture of how the federal ecological system can develop.
This study examines the development and influence of the international anti-corruption regime, utilizing Critical Discourse Analysis (CDA) to dissect the discursive practices that shape perceptions of corruption and the strategies employed to combat it. Our analysis reveals how Western institutional entrepreneurs play a pivotal role in defining corruption predominantly as bribery and governance failures, underpinned by a neoliberal ideology that prescribes societal norms and identifies corrupt practices. By exploring the mechanisms through which this ideology is propagated, the research enriches institutional entrepreneurship theory and highlights the neoliberal foundations of current anti-corruption efforts. This study not only enhances our understanding of the institutional frameworks that govern anti-corruption discourse but also demonstrates how discourse legitimizes certain ideologies while marginalizing others. The findings offer practical tools for altering power dynamics, promoting equitable participation, and addressing the imbalanced North-South power relations. By challenging established perspectives, this research contributes to transformative discourse and action, offering new pathways for understanding and combating corruption. These insights have significant theoretical and practical implications for improving the effectiveness of corruption prevention and counteraction strategies globally.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
The impact of crude oil price fluctuations on the real effective exchange rate (REER) has been widely debated, but specific evidence, particularly for developing countries in Southeast Asia, is scarce and inconclusive. This issue, especially concerning both short- and long-term relationships, remains inadequately addressed, affecting these countries for risk management related to oil price fluctuations. This study aims to fill this gap by examining these relationships in Thailand context to provide more evidence on how the REER in Southeast Asia responds to changes in crude oil prices. Monthly data of crude oil prices in Dubai market and the Thai baht REER from 2000 to 2019 were employed. Johansen co-integration test and Vector Error Correction Model (VECM) were used for analyzing long-term and short-term relationships, respectively. The results indicate a significant negative long-term relationship between crude oil prices and the REER, with a 0.31% reduction in the REER for every 1% increase in the real price of oil. However, in the short term, VECM analysis reveals significant movements in the REER in response to external shocks. On average from 2000–2019, the significant fluctuations in the REER are quickly alleviated and adjusted to its long-run equilibrium, typically by 2% in the following month following external shocks such as crude oil price fluctuations. Given these findings, which highlight the long-term relationship between the REER and crude oil prices and its short-term adjustment, it is suggested that when there is a shock from the crude oil prices, the government can strengthen short-term oil price controls or monetary subsidies to mitigate the extensive repercussions of energy market fluctuations, as such interventions would have a lesser impact on the long-term equilibrium of the REER.
Copyright © by EnPress Publisher. All rights reserved.