No less than 60% of timber production in Peru’s natural forests is the result of informal or illegal extractive activities that, by definition, are not sustainable. This article aims to demonstrate that even legitimate timber, such as timber harvested in more than 6 million hectares of forest concessions, does not meet the basic requirements of sustainable forest management. Forestry legislation itself, which does not emphasize forest management, institutional weaknesses and the socioeconomic environment are the main causes. In addition, the cutting cycles and the authorized minimum diameters, among other practices, do not allow the renewal of the resource and increase its degradation.
Based on the collective forest with common use rights, the social-ecological system analysis framework and autonomous governance theory proposed by Elinor Ostrom are introduced in the forest eco-economic system to analyze the interaction logic among the first-level subsystems and the secondary variables of the forest eco-economic system and the variables related to the autonomous governance of the system to explore the synergistic mechanisms affecting the forest eco-economic system. The results show that: in the case of information asymmetry, collective actions of governmental and non-governmental organizations will aggravate the dilemma of forest eco-economic synergistic development; actors extract forest resource units from the forest resource system to achieve economic benefits; and renewable resources of forest ecosystems can be sustained in the long term when the average extraction rate of humans from forest ecosystems does not exceed the average replenishment rate.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
In order to study the temperature change trend of the surrounding geotechnical soil during the operation and thermal recovery of the medium-deep geothermal buried pipe and the influence of the geotechnical soil on the operational stability of the vertical buried pipe after thermal recovery. Based on the data of geological stratum in Guanzhong area and the actual engineering application of medium-deep geothermal buried pipe heating system in Xi’an New Area, the influence law of medium-deep geothermal buried pipe heat exchanger on surrounding geotechnical soil is simulated and analyzed by FLUENT software. The results show that: after four months of heating operation, in the upper layer of the geotechnical soil, the reverse heat exchange zone appears due to the higher fluid temperature; in the lower layer of the geotechnical soil, the temperature decreases more with the increase of depth and shows a linear increase in the depth direction; without considering the groundwater seepage, after eight months of thermal recovery of the geotechnical soil after heating, the maximum temperature difference after recovery is 3.02 ℃, and the average temperature difference after recovery is 1.30 ℃ The maximum temperature difference after recovery was 3.02 ℃ and the average temperature difference after recovery was 1.30 ℃. The geotechnical thermal recovery temperature difference has no significant effect on the long-term operation of the buried pipe, and it can be operated continuously and stably for a long time. Practice shows that due to the influence of various factors such as stratigraphic structure, stratigraphic pressure, radioactive decay and stratigraphic thermal conductivity, the actual stratigraphic temperature below 2000m recovers rapidly without significant temperature decay, fully reflecting the characteristics of the Earth’s constant temperature body.
Energy systems face serious difficulties due to economic policy uncertainty, which affects consumption trends and makes the shift to sustainability more difficult. While adjusting for economic growth and carbon emissions, this study examines the dynamic relationship between economic policy uncertainty and energy consumption (including renewable and nonrenewable) in China from 1985Q1 to 2023Q4. The research reveals the frequency-specific and time-varying relationships between these variables by employing sophisticated techniques such as Wavelet Cross-Quantile Correlation (WCQC) and Partial WCQC (PWCQC). Economic policy uncertainty and energy consumption do not significantly correlate in the short term; however, over the long term, economic policy uncertainty positively correlates with renewable energy consumption at medium-to-upper quantiles, indicating that it may play a role in encouraging investments in sustainable energy. On the other hand, EPU has a negative correlation with nonrenewable energy usage at lower quantiles, indicating a slow move away from fossil fuels. These results are confirmed by robustness testing with Spearman-based WCQC techniques. The study ends with policy recommendations to maximize economic policy uncertainty’s long-term impacts on renewable energy, reduce dependency on fossil fuels, and attain environmental and energy sustainability in China.
This study investigates the impact of toll road construction on 59 micro, small, and medium enterprises in Kampar, Pekanbaru, and Dumai cities. The research aims to analyze the economic and environmental effects of infrastructure expansion on businesses’ profitability and sustainability, providing insights for policymakers and stakeholders to develop mitigation strategies to support MSMEs amidst ongoing infrastructure development. Structural equation modeling, spatial environmental impact analysis, and qualitative data analysis using five-level qualitative data analysis (FL-QDA) were all used together in a mixed-methods approach. Data collection involved observations, interviews, questionnaires, and geospatial analysis, including the use of a Geo-Information System (GIS) supported by drone reconnaissance to map affected areas. The study revealed that the toll roads significantly enhanced connectivity and economic growth but also negatively impacted local economies (β = 0.32, R2 = 0.60, P-value ≤ 0.05). and the environment (β = 0.34, P-value ≤ 0.05), as 49% of respondents experienced a 50% decrease in profitability. To mitigate the risk of impact, policymakers should prioritize the principle of prudence to evaluate the significance of mitigation policy implementation (β = 0.144, P-value ≥ 0.05). In a nutshell, toll road construction significantly impacts MSMEs’ business continuity, necessitating an innovative strategy involving monitoring and participatory approaches to mitigate risk.
Copyright © by EnPress Publisher. All rights reserved.