The expansion of road networks, taken place during the last decades, was driven by technological progress and economic growth. The most innovative products of this trend—modern motorways and international road corridors—provide an excellent level of service, traffic safety and necessary information to travelers. However, despite this undeniable progress, major impediments and respective challenges to road authorities and operators still remain. The present paper analytically presents the main current challenges in the road engineering field, namely: a) financing new projects, b) alternative energy resources, especially renewable energy, c) serviceability, including maintenance of road infrastructure, traffic congestion and quality of the network, d) climate change hazards due to greenhouse gas emissions increase, e) environmental impacts, f) safety on roads, streets and motorways, and g) economy and cost-effectiveness. In each country and over each network, challenges and concerns may vary, but, in most cases, competent authorities, engaged in road development policies, have to deal with most of these issues. The optimization of the means to achieve the best results seems to be an enduring stake. In the present paper, the origin and the main features of these challenges are outlined as well as their tendency to get amplified or diminished under the actual evolving economic conditions worldwide, where growth alternates with crisis and social hardship. Moreover, responses, meant to provide solutions to the said challenges, are suggested, including research findings of Aristotle University and innovative technological achievements, to drive the transition to a more sustainable future.
This paper concerns a miniature gasifier fed with a constant ambient-pressure flow of air to study the pyrolysis and subsequent combustion stage of a single wood pellet at T = 800 ℃. The alkali release and the concentration of simple gases were recorded simultaneously using an improved alkali surface ionisation detector and a mass spectrometer in time steps of 1 s and 1.2 s, respectively. It showed alkali release during both stages. During combustion, the MS data showed almost complete oxidation of the charred pellet to CO2. The derived alkali release, “O2 consumed”, and “CO2 produced” conversion rates all indicated very similar temporal growth and coalescence features with respect to the varying char pore surface area underlying the original random pore model of Bhatia and Perlmutter. But, also large, rapid signal accelerations near the end and marked peak-tails with O2 and CO2 after that, but not with the alkali release data. The latter features appear indicative of alkali–deprived char attributable to the preceding pyrolysis with flowing air. Except for the peak-tails, all other features were reproduced well with the modified model equations of Struis et al. and the parameter values resembled closely those reported for fir charcoal gasified with CO2 at T = 800 ℃.
The landlocked and fragile countries’ ability to create a sustainable path to economic growth and poverty reduction is inextricably linked to their export diversification potential, itself related to their connectivity within themselves, in the region, and other external markets. Mali, Chad, and Niger are first challenged by their geography—their landlocked nature with their vast and thinly populated space serves to isolate the most vulnerable communities from external and internal markets. Adding to these geographic disadvantages non-landlocked is incentive environment—defined by high and variable customs common external tariff regimes resulting from multiple overlapping regional trade arrangements—places a wedge between domestic and international prices, provides a disincentive to exports in favor of non-tradable and domestic-oriented sectors. By bringing greater coherence and convergence between the many common external tariff regimes in operation and the rationalization of their structures, and improving connectivity within and between markets, Mali, Chad, Niger, and Guinea can better promote the reallocation of resources toward tradable goods and services, putting the countries on a path toward greater economic inclusion and sustainable growth.
This study explores the primary drivers influencing sustainable project management (SPM) practices in the construction industry. This research study seeks to determine whether firms are primarily motivated by external pressures or internal values when embracing SPM practices. In doing so, this study contributes to the ongoing discourse on SPM drivers by considering coercive pressures (CP), ethical responsibility (ER), and green transformational leadership (GTL) as critical enablers facilitating a firm’s adoption of SPM practices. Based on data from 196 project management practitioners in Pakistan, structural equation modeling (PLS-SEM) was employed to test the hypothesized relationships. Results highlight that CP influences the management of sustainability practices in construction projects, signifying firms’ concern for securing legitimacy from various institutional actors. As an ‘intrinsic value’, ER emerges as a significant motivator for ecological stewardship, driven by a genuine commitment to promoting sustainable development. This study also unveils the significant moderating effect of GTL on the association among CP, ER, and SPM. Lastly, the results of IMPA reveal that ER slightly performs better than CP as it helps firms internalize the essence of sustainability. This research study expands our understanding of SPM drivers in construction projects by exploring the differential impact of external pressures and the firm’s intrinsic values. These findings provide valuable insights for policymakers and practitioners, aiding them in promoting SPM to attain sustainable development goals.
The study’s purpose is to evaluate the influence of some factors of the model of planned behavior (TPB) and the perceived academic support of the university on the attitude toward entrepreneurship and entrepreneurial intention of students. The results of Structural Equation Modeling (SEM) linear structural model analysis with primary data collected from 1162 students indicated that entrepreneurial intention is influenced by attitude toward entrepreneurship, subjective norm, perceived educational support, and perceived concept development support. In addition, this study also found the positive influence of perceived educational support, concept development support, and business development support on attitude towards entrepreneurship. Interestingly, the influence of perceived business development support on entrepreneurial intention was rejected, and personal innovativeness is demonstrated to promote an attitude toward entrepreneurship. Notably, this study also highlights the moderating role of personal innovativeness on the relationship between attitude toward entrepreneurship and entrepreneurial intention. Based on these findings, several implications were suggested to researchers, universities, and policymakers.
Copyright © by EnPress Publisher. All rights reserved.