To address the problem that the imaging inversion method based on a single model in integrated aperture imaging is difficult to effectively correct model errors and perform accurate image reconstruction, a dual-model (DM)-based integrated aperture imaging inversion method is proposed for correcting the parametric errors of the inversion model and performing highly accurate millimeter-wave image reconstruction of the target scene. In view of the different parameter sensitivities of the Fourier transform (MFFT) model and the G-matrix (GM) model, the proposed DM method first corrects the imaging parameters with errors accurately by comparing the reconstruction errors of the two models; then recon-structs a high-precision target image based on the accurate GM model with the help of an improved regularization method. It is proved by simulation experiments that the proposed DM method can effectively correct the parameter errors of the imaging model and reconstruct the target scene with high accuracy in millimeter wave images compared with the traditional single-model imaging method.
Metamaterial perfect absorber is very important in the study of refractive index sensor. The time domain finite difference method is used to simulate the surface plasmon structure. The double nanorod periodic structure is designed, and the parameters of the top layer structure are optimized according to the impedance matching principle, and the absorption rate of the structure to the light wave reaches 99.6% when the wavelength is about 12 mm. The absorption spectroscopy of the structure is studied with the change of the refractive index of the spatial medium around the structure, and the sensitivity of the double nanorod structure is 4,008 nm/RIU, which can be used to measure the refractive index of the gas.
Seawater desalination has been studied with interest due to the scarcity of fresh water for human consumption. Solar distillation is an old method; the productivity, energy consumption of the process and the cost of the desalinated water thus obtained depend on the efficiency achieved in each of the stages of these systems. The limited capacity to absorb solar radiation and transform it into useful heat for evaporation, interaction with the surrounding medium, and heat losses restrict the overall efficiency of the thermal process and productivity. Since the energy comes from solar radiation, the maximum productivity of this process will be constrained by the magnitude of the total solar radiation available in an area of the planet due to its geographic location, time of year and local climatic conditions. The processes of this energy will be thermodynamically limited by the heat transfer coefficients achieved in the equipment, the maximum value that the evaporation heat can reach, as long as the losses to the environment by convection and radiation are minimal. Comparative analyses of several proposed models, reported data of distillers, reported data of solar radiation that reach average values of up to 7.2–7.4 kwh/m2 in some regions of the planet are presented and estimates are made for productivity of these equipments that they reach between 6.7 and 6.9 kg/m2 day with a theoretical maximum efficiency of about 0.16 of the total solar radiation.
This work presents the results of the continuity of the research process carried out in the Energy Studies Center belonging to the Faculty of Technical Sciences of the University of Matanzas, which involves the establishment of a dimensionless model to determine the average condensation heat transfer coefficient of Air Coleed Condenser (ACC) systems in straight and inclined tubes. The research consists in obtaining in an analytical way the solution of the differential equation of the velocity profile, considering that condensation is of pellicular type, finally the empirical condition of Roshenow is combined with the theoretical solution to generate a numerical expression that allows obtaining with a 15.2% of deviation in 2,192 tests, a value of the average coefficient of heat transfer by condensation very similar to the one obtained with the use of the most referenced model in the consulted literature, the empirical model of Chato.
Embassies are important buildings, involving the diplomatic image of a country’s government in another foreign country. Given the rising tensions between countries, either political, economic, religion or war, attacks on embassies have been increasing in recent years. Thus, it is evident that appropriate measures are to be taken to reduce the potential impact of an attack. The paper discusses the measures in enhancing building security of embassies. The principles for Security Planning and Design are discussed, followed by an introduction to a systematic security risk assessment framework. The framework is evaluated regarding the potential security risk posed by an attack against elements of the mega infrastructure using explosives. Further options to increase the security of embassies are also explored to reduce the risk of a potential attack. A security-enhanced building, planned and constructed well to specifications, can provide benefits to the client, including greater cost advantage and increase of value for the structure.
The management of Mediterranean mountains need to know whether or not the flora is adapted to respond to fire and, if so, through what mechanisms. Serpentine outcrops constitute particular ecosystems in the Mediterranean Basin, and plants need to make an additional adaptive effort. The objective of this study is to know the response to fire of the main members of the group of serpentine plants, which habit the Spanish Mediterranean ultramafic mountain, to help in their management. For this purpose, monitoring plots were established on a burned ultramafic outcrop, which was affected by fire in August 2012.They were located in the Mediterranean south of the Iberian Peninsula, Andalusia region. The dominant vegetation of this serpentine ecosystem had been studied previously to fire; it was a shrubland composed of endemic serpentinophytes (small shrubs and perennial herbs) included in Digitali laciniatae-Halimietum atriplicifolii plant association (Cisto-Lavanduletea class) in an opened pine forest. The post-fire response of the plants was studied in the stablished burned plots by field works through permanent 200 x 10 m transect methods, consisting on checking whether they were resprouters, seeders, both of them or if they showed no survival response. Additional information about fire related functional traits is provided for the studied taxa from other studies. Of the total of plants studied (23 taxa), 74% acted as resprouters, 30% as seeders, some of which also had the capacity to resprout (13%), and only 9% of the plants did not show any survival strategy. The presence of a resprouting burl was not high (17%), although serpentine small shrubs such as Bupleurum acutifolium and the generalist Teucrium haenseleri had this kind of organ. The herbaceous taxa Sanguisorba verrucosa, Galium boissieranum and Linum carratracense were seen to be resprouters and seeders. The serpentine obligated Ni-accumulator, Alyssum serpyllifolium subsp. malacitanum, did not show any survival strategy in the face of fire and therefore their populations need monitoring after fires. In the studied ecosystems no species had traits that would protect the aerial part of the plant against fire, although most of the species are capable of post-fire generation by below ground buds. Our results show that the ecosystem studied, composed of taxa with a high degree of endemism and some of them threatened, is predominantly adapted to survival after a fire, although their response capacity may be decreased by environmental factors.
Copyright © by EnPress Publisher. All rights reserved.