The porous carbon/Ni nanoparticle composite was prepared by a freeze-drying method using NaCl as the template. It was applied in the effect of the concentration, adsorption time, and temperature of adsorption on the adsorption behavior. The kinetic model and the adsorption isothermic fitting results show that the adsorption behavior fits with the pseudo-secondary dynamics and the Langmuir isothermal model, indicating that the adsorption process is monolayer adsorption. Thermodynamic results indicate that the adsorption process is spontaneous physicochemical adsorption. The fitting showed that the porous carbon/Ni nanoparticle composites reach 217.17 mg·g-1, at 313 K indicates good adsorption for Congo red.
The rare earth mining area in South China is the main production base of ionic rare earth in the world, which has brought inestimable economic value to the local area and even the whole nation. However, due to the lack of mining technology and excessive pursuit for economic profits, a series of environmental problems have arisen, which is a great threat to the ecosystem of the mining area. Taking Lingbei rare earth mining area in Ganzhou as an example, this paper discriminated and analyzed such aspects as the ecological source, ecological corridor and ecological nodes of the mining area based on the landscape ecological security pattern theory and the minimum cumulative resistance model (MCR) method, and constructed a landscape ecological security pattern of the mining area during the 2009, 2013 and 2018. The results show that: i) The patch area of the ecological source of rare earth mining area is small, mainly concentrated in the east and west sides of the mining area. ii) During the selected year, the ecological source area, ecological corridors, radiation channels and the number of ecological nodes in the rare earth mining area are increasing, indicating that the landscape ecological security of the rare earth mining area has been improved to some extent, but it remains necessary for relevant departments to make a optimized planning to further reconstruct the ecological security pattern of the rare earth mining area.
Developing Asia’s infrastructure gap results from both inadequate public resources and a lack of effective channels to mobilize private resources toward desired outcomes. The public-private partnership (PPP) mechanism has evolved to fill the infrastructure gap. However, PPP projects are often at risk of becoming distressed, or worst, being terminated because of the long-term nature of contracts and the many different stakeholders involved. This paper applies survival-time hazard analysis to estimate how project-related, macroeconomic, and institutional factors affect the hazard rate of the projects. Empirical results show that government’s provision of guarantees, involvement of multilateral development banks, and existence of a dedicated PPP unit are important for a project’s success. Privately initiated proposals should be regulated and undergo competitive bidding to reduce the hazard rate of the project and the corresponding burden to the government. Economic growth leads to successful project outcomes. Improved legal and institutional environment can ensure PPP success.
Starting from the ‘90s, there has been a significant increase in PPP use in the public sector in Europe, benefiting the implementation of infrastructure projects. In Italy, PPP is still much more limited than in such countries as the UK and France: the projects funded are smaller and the sectors involved are less appropriate. Based on the economic literature, European initiatives and international comparisons, the paper examines aspects of regulations that could encourage the appropriate use of PPP and considers the problems with the Italian regulations, while proposing some corrective measures. The main limitations involve: i) the absence of adequate preliminary assessments about the advantages of using PPP rather than the traditional procurement, ii) the relative lack of attention to the contract terms, iii) inadequate safeguards to ensure the bankability of the projects, and iv) limited information transparency and accessibility.
Learning from experience to improve future infrastructure public-private partnerships is a focal issue for policy makers, financiers, implementers, and private sector stakeholders. An extensive body of case studies and “lessons learned” aims to improve the likelihood of success and attempts to avoid future contract failures across sectors and geographies. This paper examines whether countries do, indeed, learn from experience to improve the probability of success of public-private partnerships at the national level. The purview of the paper is not to diagnose learning across all aspects of public-private partnerships globally, but rather to focus on whether experience has an effect on the most extreme cases of public-private partnership contract failure, premature contract cancellation. The analysis utilizes mixed-effects probit regression combined with spline models to test empirically whether general public-private partnership experience has an impact on reducing the chances of contract cancellation for future projects. The results confirm what the market intuitively knows, that is, that public-private partnership experience reduces the likelihood of contract cancellation. But the results also provide a perhaps less intuitive finding: the benefits of learning are typically concentrated in the first few public-private partnership deals. Moreover, the results show that the probability of cancellation varies across sectors and suggests the relative complexity of water public-private partnerships compared with energy and transport projects. An estimated $1.5 billion per year could have been saved with interventions and support to reduce cancellations in less experienced countries (those with fewer than 23 prior public-private partnerships).
Theoretically, within the diatomic model, the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positive and negative charged-states is studied. According to the specific (per atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemical inertness, neutron-absorption, etc., making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
Copyright © by EnPress Publisher. All rights reserved.