Coordination and integration among farms within agri-food chains are crucial to tackle the issue of fragmentation within the primary sector, both at the European and national level. The Italian agri-food system still complains about the need to aggregate supply to support market dynamics, especially for niche and quality products that characterize the Made in Italy. It is well known that the Italian agri-food sector is closely linked to the relationship between agriculture on one hand and culture/tradition on the other, which is reflected in the high number of quality products that have obtained EU PDO (Protected Designation of Origin) and PGI (Protected Geographical Indication) recognition. The development of vertical forms of coordination has found significant support in recent years from the integrated supply chain design approach, which is increasingly becoming an essential tool for implementing rural development policies. In this context, the study provides a comparison between companies that have joined the Integrated Supply Chain Projects of the Rural Development Program and those that have not applied. The aim is to highlight any differences in order to understand policy impact. The analysis is based on the Emilia-Romagna region Farm Accountancy Data Network (FADN) data, and the sample consists of more than 2 thousand farms. The statistical analysis conducted compares treated and non-treated using the Welch-t-test for independent unmatched samples. The main results show higher values for treated farms when structural variables are analyzed, like the utilized agricultural area or the agricultural work unit. In general, higher balance sheet performances emerged for treated farms. In conclusion, this study shows that the Integrated Supply Chain Projects represent a worthwhile tool both to increase cooperation, food quality, and to enhance a competitive agricultural sector.
In the context of big data, the teaching of financial accounting for vocational undergraduate students needs to be continuously optimized and innovated. This article provides a brief analysis of the current situation of financial accounting teaching for vocational undergraduate students. It also analyzes the phenomena of outdated teaching concepts, outdated teaching content, and unreasonable teaching objectives in the current teaching of financial accounting for vocational undergraduate students. It proposes the idea of innovating teaching concepts in current teaching work, clarifying teaching objectives, integrating flipped classroom reform teaching mode, and introducing project-based teaching method to improve teaching efficiency, so as to achieve more efficient teaching guidance for students.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
This project analyzes the evolution of the manufacturing sector in Portugal from 2009 to 2021, focusing on the variations in the number of active companies across various subcategories, such as food, textiles, and metal product industries. The goal of this analysis is to understand the dynamics of growth and contraction within each sector, providing insights for companies to adjust their market and operational strategies. Key objectives include analyzing the overall evolution in the number of companies, identifying subcategories with notable changes, and providing a comprehensive analysis of observed trends and patterns. The study is based on data from PORDATA 2024, and the research employs temporal trend analysis, linear and quadratic regression, and the Pareto representation to identify patterns of growth and decline. By comparing annual data, the project uncovers periods of growth and decline, allowing for a deeper understanding of the sector’s dynamics. The findings also highlight variations in periods of economic crises and during the Covid-19 pandemic, and recommendations for action are presented to support businesses resilience and continuity. These results are valuable for companies within the manufacturing sectors analyzed and policy makers, guiding strategic decisions to navigate the complexities of the market dynamics and to ensuring long-term organizational sustainable success.
Regions rich in natural resources often exhibit a high dependency on revenue from Revenue Sharing Funds (DBH). This dependency can pose long-term challenges, especially when commodity prices experience significant fluctuations. This study examines the role of Revenue Sharing Funds from Natural Resources (DBH SDA) on economic growth in 491 regencies/cities in Indonesia during the 2010–2012 period. The analysis employs panel data regression. The selection of this period was based on the occurrence of a resource boom characterized by a surge in global demand for natural resource commodities, accompanied by an increase in commodity prices. This condition positively impacted the revenues of both the nation and resource-rich regions. The results of the study show that economic growth is not influenced by DBH SDA but rather by General Allocation Funds (DAU). This indicates that the central government still plays a significant role in determining economic growth at the regency/city level in Indonesia. Regions need to prioritize economic diversification to reduce reliance on DBH SDA and DAU. Investment in productive sectors, such as infrastructure, education, and technology, can be a strategic approach to accelerating regional economic growth.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Copyright © by EnPress Publisher. All rights reserved.