Studies related to the use of steel mill slag have become essential, because of the possibility of its use as a component of substrates in the production of seedlings and because this use minimizes the risk of environmental contamination, resulting from inadequate disposal. Thus, the objective of this work was to evaluate the effect of increasing levels of steel slag in substrates composed of soil with tanned bovine manure and sand, on the growth variables and the quality of “Dedo-de-moça” pepper (Capsicum baccatum L.) seedlings. A randomized block design was used with five slag concentrations (0%, 2.5%, 5%, 10% and 20%) and four repetitions. Evaluations occurred at 55 days after sowing, consisting of counting the number of leaves, measuring plant height and collar diameter, quantifying the dry mass of leaves and roots and determining the Dickson Quality Index. Regression models were fitted (P < 0.05) to treatments with increasing levels of steel slag. The addition around 10% of slag to the substrate provided the highest values of growth variables, in seedlings of Dedo-de-moça pepper.
The use of bioproducts, economically viable, are of extreme importance in the protection and stimulation of germination in vegetable crops. This work evaluated the effect of the microorganisms Azospirillum brasiliense, Bacillus sub-tilis, Trichoderma harzianum and the commercial seed treatment product (Fipronil + Pilaclostrobin and Methyl Thiophanate) on seeds and seedlings of lettuce (Lactuca sativa), carrot (Daucus carota) and tomato (Solanum lycopersicum). The seeds were inoculated before being submitted to the germination test. The chemical treatment proved ineffective in protecting the seed of all crops and stimulating germination. T. harzianum increased the germination index of lettuce seeds, had better values in root system size in tomato crop and stimulated radicle emission in carrot. B. subtilis stood out in dry matter accumulation in tomato crop. The microorganisms B. subtilis and T. harzianum present potential for vegetable seed treatment.
Influenced by global financial crisis in 2008, many countries around the world have realized the significance of sustainable development. And green development, as the most important pathway to sustainability, has been implemented by various countries. In this context, green development has drawn great attention from academic researchers both at home and abroad in recent years and has become an interdisciplinary-oriented research direction. As an applied basic research field for exploring the structural change of resources and environment as well as regional sustainable development, geography plays an essential role in the research of green development. Based on an intensive literature review, this article firstly summarized the connotation and analytical framework of green development. Secondly, it systematically outlined the progress of green development research from the perspective of geography and thus extracted seven themes, that is, the influencing factors of green development, assessment methods, spatial and temporal characteristics of green development, green development and industrial transformation, green transformation of resource-based cities, the effect of green development, and green development institutions and recommendations. Comments were made on the existing studies including their shortcomings. Finally, future research emphases were discussed, aiming to provide references for further study on green development from the perspective of geography in China.
Space is a product of society. Driven by industrialization, urbanization, informatization and government policies, China’s rural space is undergoing drastic reconstruction. As one of the core contents of international rural geography research, rural space research are multi-disciplinary, multi perspective, multi-dimensional and multi-method, forming a rich research field. In order to comprehensively grasp the progress of rural space research abroad, this study reviewed international rural space research literature in recent 40 years. The study found that foreign scholars described the connotation of rural space from the aspects of material, imagination and practice, emphasize the importance of daily life practice. It introduced living space to construct a more systematic research framework of rural space by establishing a “three-fold model of rural space”. With regard to the theoretical perspective, international research on rural space has experienced three stages: functionalism, political economics and social constructivism. In the evolution of time, it has realized the transformation from productivism to post-productivism; in the spatial dimension, it realizes the multiple superposition of settlement space, economic space, social space and cultural space. As a whole, international research on rural space has realized the transformation from material level to social representation, from objective space to subjective space, and from static one-dimensional space to dynamic multi-dimensional space, which enlightens us on the importance of interdisciplinary research and “social cultural” research on rural space. The construction of rural space in China needs to pay attention to the subject status of farmers and multifunction of rural space, respect the role of locality and difference of various places, and recover the function of production of meaning of rural space.
We have studied the effect of the series resistance on the heating of the cathode, which is based on carbon nanotubes and serves to realize the field emission of electrons into the vacuum. The experiment was performed with the single multi-walled carbon nanotube (MCNT) that was separated from the array grown by CVD method with thin-film Ni-Ti catalyst (nickel 4 nm/Ti 10 nm). The heating of the cathode leads to the appearance of a current of the thermionic emission. The experimental voltage current characteristic exhibited the negative resistance region caused by thermal field emission. This current increases strongly with increasing voltage and contributes to the degradation of the cold emitter. The calculation of the temperature of the end of the cathode is made taking into account the effect of the phenomenon that warms up and cools the cathode. We have developed a method for processing of the emission volt-ampere characteristics of a cathode, which relies on a numerical calculation of the field emission current and the comparison of these calculations with experiments. The model of the volt-ampere characteristic takes into account the CNT’s geometry, properties, its contact with the catalyst, heating and simultaneous implementation of the thermionic and field emission. The calculation made it possible to determine a number of important parameters, including the voltage and current of the beginning of thermionic emission, the temperature distribution along the cathode and the resistance of the nanotube. The phenomenon of thermionic emission from CNTs was investigated experimentally and theoretically. The conditions of this type emission occurrence were defined. The results of the study could form the basis of theory of CNT emitter’s degradation.
Phytomediation is an environmentally friendly green rehabilitation technology that is often incorporated with an application to improve calcium peroxide and phytohormones required for the growth of agricultural plants with the expectation to improve the effectiveness of plant rehabilitation. This study mainly consists of two parts: (1) water culture experiment and (2) pot culture experiment. In the water culture experiment, we attempt to understand the influence of the addition of calcium peroxide, phytohormones (IAA and GA3) and a chelating agent on the growth of sunflower plants. However, in the pot culture experiment, when hormones and the chelating agent EDTA are introduced to different plant groups at the same time, if the nutrition in the water required by plants is not available, the addition of the hormone cannot negate the toxicity caused by EDTA. In terms of calcium peroxide, due to quick release of oxygen in water, this study fails to apply calcium peroxide to the water culture experiment.
When the pot culture experiment is used to examine the influence of hormones at different concentration levels on the growth of sunflowers, GA3 10-8 M is reported to have the optimal effectiveness, followed by IAA 10-8 M; IAA 10-12 M has the lowest effectiveness. According to an accumulation analysis of heavy metals at different levels, GA3 concentrates in leaves to transport nutrition in soil to leaves. This results in an excellent TF value of 2.329G of GA3 than 1.845 of the control group indicating that the addition of the hormone and chelating agent to GA3 increases the TF value and the chelating agent is beneficial to the sunflower plant. If we examine phytoattenuation ability, the one-month experiment was divided into three stages for ten days each. The concentration level of heavy metals in the soil at each stage dropped continuously while that of the control group decreased from 31.63 mg/kg to 23.96 mg/kg, GA3 from 32.09 mg/kg to 23.04 mg/kg and EDTA from 30.65 mg/kg to 25.93 mg/kg indicating the quickest growth period of the sunflowers from the formation of the bud to blossom. During the stage, the quick upward transportation of nutrition results in quick accumulation of heavy metals; the accumulated speed of heavy metals is found higher than that of directly planted plants. This study shows an improvement in the effectiveness of the addition of hormones on plant extraction and when rehabilitation is incorporated with sunflowers with the beginning bud formation, better treatment effectiveness can be reached.
Copyright © by EnPress Publisher. All rights reserved.