The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
This study investigates the influence of service quality, destination facilities, destination image, and tourist satisfaction on tourist loyalty in the Pasar Lama Chinatown area of Tangerang City. Utilizing data from 400 respondents, the study employed structured questionnaires analyzed through descriptive statistics, reliability analysis, exploratory and confirmatory factor analysis, and structural equation modeling (SEM). The results reveal that service quality (β = 0.47, p < 0.001), destination facilities (β = 0.33, p < 0.001), and destination image (β = 0.4, p < 0.001) all significantly enhance tourist satisfaction, which in turn has a strong positive effect on loyalty (β = 0.58, p < 0.001). Direct paths also show that service quality, destination facilities, and destination image independently contribute to tourist loyalty. Bootstrapping confirms satisfaction’s mediating role between these factors and loyalty. Practical recommendations suggest prioritizing service quality improvements, facility enhancements, and a positive destination image to foster loyalty and promote tourism sustainability in Pasar Lama, China. These insights assist tourism managers in developing strategies to enhance long-term visitor retention and engagement in the area.
The tourism sector is exponentially expanding across the globe. Despite different forms of tourism, community-based tourism has evolved with new dimensions of development. Assessing the sustainable development of the sector is a top priority in order to adopt the new forms. Therefore, in this study, the association between community-based tourism and its sustainable development was measured under the lens of collaborative theory and social exchange perspective. Non-probabilistic judgmental sampling techniques were applied, and 201 respondents were assessed. Data analysis was conducted using structural equation modeling (SEM). The study grounded with residents’ perspectives and attested that community-based tourism directly enhanced residents’ economic conditions with a better environment, and the relationship between residents and tourists enhanced the tourism industry’s sustainable development. Stakeholders like government and local administrations play a significant role in exploring community-based tourism. This outcome of the research will be a substantial resource for local administrations, governments, researchers, policymakers and practitioners.
The use of public transport is one of the concepts of sustainable transport. However, people prefer to use private vehicles, which causes various problems, one of which is the high carbon emissions produced. This research aims to encourage programs to use passenger public transportation through a carbon tax. The method in this research is descriptive quantitative with primary data and secondary data. Secondary data was developed in the research by collecting literature study sources on the concept of sustainable transportation development as well as primary data carried out by analyzing calculations regarding the implementation of the carbon tax. There are several proposals that can significantly accelerate the achievement of goals, namely a collaborative approach through collaboration between local government agencies, a policy of progressively implementing a carbon tax as a coercive policy and supported by a program to provide supporting facilities for public transportation. Decision making in this research was carried out by looking at the percentage increase in public transportation use based on the application of a carbon tax or carbon tax.
Copyright © by EnPress Publisher. All rights reserved.