The current manuscript overviews the potential of inimitable zero dimensional carbon nanoentities, i.e., nanodiamonds, in the form of hybrid nanostructures with allied nanocarbons such as graphene and carbon nanotube. Accordingly, two major categories of hybrid nanodiamond nanoadditives have been examined for nanocompositing, including nanodiamond-graphene or nanodiamond/graphene oxide and nanodiamond/carbon nanotubes. These exceptional nanodiamond derived bifunctional nanocarbon nanostructures depicted valuable structural and physical attributes (morphology, electrical, mechanical, thermal, etc.) owing to the combination of intrinsic features of nanodiamonds with other nanocarbons. Consequently, as per literature reported so far, noteworthy multifunctional hybrid nanodiamond-graphene, nanodiamond/graphene oxide, and nanodiamond/carbon nanotube nanoadditives have been argued for characteristics and potential advantages. Particularly, these nanodiamond derived hybrid nanoparticles based nanomaterials seem deployable in the fields of electromagnetic radiation shielding, electronic devices like field effect transistors, energy storing maneuvers namely supercapacitors, and biomedical utilizations for wound healing, tissue engineering, biosensing, etc. Nonetheless, restricted research traced up till now on hybrid nanodiamond-graphene and nanodiamond/carbon nanotube based nanocomposites, therefore, future research appears necessary for further precise design varieties, large scale processing, and advanced technological progresses.
In this paper advanced Sentiment Analysis techniques were applied to evaluate public opinions reported by rail users with respect to four major European railway companies, i.e., Trenitalia and Italo in Italy, SNCF in France and Renfe in Spain. Two powerful language models were used, RoBERTa and BERT, to analyze big amount of text data collected from a social platform dedicated to customers reviews, i.e., TrustPilot. Data concerning the four European railway companies were first collected and classified into subcategories related to different aspects of the railway sector, such as train punctuality, quality of on-board services, safety, etc. Then, the RoBERTa and BERT models were developed to understand context and nuances of natural language. This study provides a useful support for railways companies to promote strategies for improving their service.
This study investigates the relationship between hydrological processes, watershed management, and road infrastructure resilience, focusing on the impact of flooding on roads intersecting with streams in River Nile State, Sudan. Situated between 16.5° N to 18.5° N latitude and 33° E to 34° E longitude, this region faces significant flooding challenges that threaten its ecological and economic stability. Using precise Digital Elevation Models (DEMs) and advanced hydrological modeling, the research aims to identify optimal flood mitigation solutions, such as overpass bridges. The study quantifies the total road length in the area at 3572.279 km, with stream orders distributed as follows: First Order at 2276.79 km (50.7%), Second Order at 521.48 km (11.6%), Third Order at 331.26 km (7.4%), and Fourth Order at 1359.92 km (30.3%). Approximately 27% (12 out of 45) of the identified road flooding points were situated within third- and fourth-order streams, mainly along the Atbara-Shendi Road and near Al-Abidiya and Merowe. Blockages varied in distance, with the longest at 256 m in Al-Abidiya, and included additional measurements of 88, 49, 112, 106, 66, 500, and 142 m. Some locations experienced partial flood damage despite having water culverts at 7 of these points, indicating possible design flaws or insufficient hydrological analysis during construction. The findings suggest that enhanced scrutiny, potentially using high-resolution DEMs, is essential for better vulnerability assessment and management. The study proposes tailored solutions to protect infrastructure, promoting sustainability and environmental stewardship.
Modernizing the Internet of Things in Islamic boarding schools is essential to eliminate backwardness and skills gaps. Santri must have cognitive, affective, psychomotor, and creative intelligence to be ready to enter the industrial and business world. The students’ need for information transparency can be resolved using technology. This is because the empowerment of the Internet of Things has become a separate part of Islamic boarding school activities with students who can connect in real-time. This research aims to analyze current conditions and stakeholder involvement regarding the application of the Internet of Things in innovative Islamic boarding school services in the era of disruption. The Descriptive Method and Individual Interest Matrix Analysis were used by involving 130 respondents from the internal environment of the Daarul Rahman Islamic boarding school and completing the questionnaire through FGD (Focus Group Discussion) with the leaders of the Daarul Rahman Islamic boarding school. The results show that the current condition of Islamic boarding schools is that most need to learn or understand IoT, even though they are enthusiastic about learning new things and flexible in accepting change. The challenges required in implementing IoT are financial investment, increasing human resources through training, and synergy between Islamic boarding school policy makers. Mutually supportive and solid conditions are required between foundations, school principals, and school committees to implement IoT at Daarul Rahman Islamic Boarding School. Collaboration with various parties is needed because the implementation of IoT cannot be done alone by Islamic boarding schools but with the support of various related parties.
Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
Many financial crises have occurred in recent decades, such as the International Debt Crisis of 1982, the East Asian Economic Crisis of 1997–2001, the Russian economic crisis of 1992–1997, the Latin American debt Crisis of 1994–2002, the Global Economic Recession of 2007–2009, which had a strong impact on international relations. The aim of this article is to create an econometric model of the indicator for identifying crisis situations arising in stock markets. The approach under consideration includes data for preprocessing and assessing the stability of the trend of time series using higher-order moments. The results obtained are compared with specific practical situations. To test the proposed indicator, real data of the stock indices of the USA, Germany and Hong Kong in the period World Financial Crisis are used. The scientific novelty of the results of the article consists in the analysis of the initial and given initial moments of high order, as well as the central and reduced central moments of high order. The econometric model of the indicator for identifying crisis situations arising considered in the work, based on high-order moments plays a pivotal role in crisis detection in stock markets, influencing financial innovations in managing the national economy. The findings contribute to the resilience and adaptability of the financial system, ultimately shaping the trajectory of the national economy. By facilitating timely crisis detection, the model supports efforts to maintain economic stability, thereby fostering sustainable growth and resilience in the face of financial disruptions. The model’s insights can shape the national innovation ecosystem by guiding the development and adoption of monetary and financial innovations that are aligned with the economy’s specific needs and challenges.
Copyright © by EnPress Publisher. All rights reserved.