This study aims to explore the factors influencing people’s intention to use home fitness mobile apps in the post-pandemic era. By incorporating the perspective of playfulness into the decomposed theory of planned behavior, it seeks to construct a behavioral model for the public's use of AR sports games for home exercise. The research focuses on Active Arcade users residing in Taiwan, employing the snowball sampling method to conduct an online questionnaire survey. A total of 340 valid questionnaires were collected and analyzed using linear structural equations. The study reveals three main findings: first, the behavioral model for Active Arcade users constructed based on the decomposed theory of planned behavior demonstrates a good fit; second, users’ attitudes, subjective norms, and perceived behavioral control have a positive and significant impact on behavioral intention; third, perceived usefulness, perceived ease of use, and perceived playfulness all positively and significantly influence attitudes, with perceived playfulness having the highest impact coefficient; fourth, perceived benefits of exercise are the most crucial factor affecting subjective norms; and fifth, convenience technologies are the key factor influencing perceived behavioral control. This study provides valuable insights for theory and management practice, offering guidance on the use of home fitness apps in the post-pandemic era while addressing research limitations and suggesting future directions.
The livelihood of ethnic minority households in Vietnam is mainly in the fields of agriculture and forestry. The percentage of ethnic minorities who have jobs in industry, construction, and services is still limited. Moreover, due to harsh climate conditions, limited resources, poor market access, low education level, lack of investment capital for production, and inadequate policies, job opportunities in the off-farm and non-farm activities are very limited among ethnic minority areas. This paper assessed the contribution of livelihood diversification activities to poverty reduction of ethnic minority households in Son La Province of Vietnam. The analysis was based on the data using three stages sampling procedure of 240 ethnic minority households in Son La Province. The finding showed that the livelihood diversification activities had positively significant contribution to poverty reduction of ethnic minority households in Son La Province. In addition, the factors positively affecting the livelihood choices of ethnic minority households in Son La Province of Vietnam are education level, labor size, access to credit, membership of associations, support policies, vocational training, and district. Thus, improving ethnic minority householder’s knowledge through formal educational and training, expanding availability of accessible infrastructure, and enhancing participation of social/political associations were recommended as possible policy interventions to diversify livelihood activities so as to mitigate the level of poverty in the study area.
The study examines the factors shaping inflation in 2022–2023 and explores why inflation in the Hungarian economy has increased more sharply than in neighboring countries with similar structures. The research hypothesis suggests that the inflationary surge, which is notable both globally and within the European Union, is not solely due to market economy mechanisms, but also to specific circumstances in Hungary, including the state’s radical interventions aimed at curbing inflation. The study seeks to highlight these effects and provide recommendations for economic policymakers to develop a more resilient inflation policy. Additionally, it focuses on analyzing inflation in the agricultural sector. The results indicate that, alongside global inflationary pressures, several country-specific factors have driven up the inflation rate in Hungary. Energy prices have risen sharply, and some supply chains from the East have been disrupted. The country under study is less productive, and the impact of the energy price shock on the energy-intensive food industry is higher than in surrounding countries. Consequently, the exchange rate volatility in 2022–2023, combined with short- and medium-term factors, has had a significant impact on food inflation, causing substantial deviations from long-term equilibrium. The research concludes that, in addition to increasing food self-sufficiency, special attention should be given to the domestic development of the agricultural supply chain.
The emergence of the COVID-19 pandemic led to the need to move educational processes to virtual environments and increase the use of digital tools for different teaching uses. This led to a change in the habits of using information and communication technologies (ICT), especially in higher education. This work analyzes the impact of the COVID-19 pandemic on the frequency of use of different ICT tools in a sample of 950 Latin American university professors while focusing on the area of knowledge of the participating professors. To this end, a validated questionnaire has been used, the responses of which have been statistically analyzed. As a result, it has been proven that participants give high ratings to ICT but show insufficient digital competences for its use. The use of ICT tools has increased in all areas after the pandemic but in a diverse way. Differences have been identified in the areas of knowledge regarding the use of ICT for different uses before the pandemic. In this sense, the results suggest that Humanities professors are the ones who least use ICT for didactic purposes. On the other hand, after the pandemic, the use of ICT for communication purposes has been homogenized among the different knowledge areas.
This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
Copyright © by EnPress Publisher. All rights reserved.