This study developed a specific scale to measure the impact of extrinsic motivations on students’ decisions to pursue online graduate programs at business schools in Latin America. Using a mixed-methods approach, the research proceeded in three stages. In the first stage, the construct was defined by identifying key extrinsic factors motivating students to enroll in online graduate programs, followed by the creation and initial validation of the scale in Colombia. The second stage involved testing the scale in Chile to determine its cross-cultural applicability. In the third stage, the scale’s predictive validity was confirmed, demonstrating its effectiveness in explaining how extrinsic motivations influence students’ intentions to enroll in online graduate programs. The findings indicate that the scale, composed of five dimensions—Cost Reduction, Ability to Study from Any Location, Control Over Learning Pace, Flexibility to Balance Study and Work, and Avoiding Commuting Time—is a reliable predictor of student preferences and intentions in online graduate education. The final scale includes 25 items across these dimensions, measuring extrinsic factors through items related to flexibility, time savings, and global accessibility. Validation in two Latin American countries confirms the scale’s relevance across diverse cultural contexts, enhancing its applicability within the region. This study provides empirical evidence that extrinsic motivation is a key determinant of students’ intentions to enroll in online programs in developing countries. It confirms that extrinsic motivations reflect a preference for flexible learning options compatible with students’ lifestyles and professional needs, linked to their beliefs about time management, professional advancement, and career opportunities associated with earning a graduate degree.
The incorporation of artificial intelligence (AI) into language education has created new opportunities for improving the instruction and acquisition of Chinese characters. Nevertheless, the cognitive difficulties linked to the acquisition of Chinese characters, such as their intricate visual features and lack of clear meaning, necessitate thoughtful deliberation when developing AI-supported learning interventions. The objective of this project is to explore the capacity of a collaborative method between humans and machines in teaching Chinese characters, utilising the advantages of both human expertise and AI technology. We specifically investigate the utilisation of ChatGPT, a substantial language model, for the creation of instructional materials and evaluation methods aimed at teaching Chinese characters to individuals who are not native speakers. The study utilises a mixed-methods approach, which involves both qualitative examination of lesson plans created by ChatGPT and quantitative evaluation of student learning outcomes. The results indicate that the suggested framework for human-machine collaboration can successfully tackle the cognitive difficulties associated with learning Chinese characters, resulting in enhanced learner involvement and performance. Nevertheless, the research also emphasises the constraints of AI-generated material and the significance of human involvement in guaranteeing the accuracy and dependability of educational interventions. This research adds to the expanding collection of literature on AI-assisted language learning and offers practical insights for educators and instructional designers who aim to use AI tools into Chinese language curriculum. The results emphasise the necessity of employing a multi-disciplinary strategy in AI-supported language learning, incorporating knowledge from cognitive psychology, educational technology, and second language acquisition.
The study’s goal was to investigate the impact of e-learning determinants on student satisfaction and intention to use e-learning tools. The dependent and independent variables in this study were based on the technological acceptance model. The study examines three determinants, including usefulness, ease of use, and facilitating conditions, as independent variables, while student satisfaction and intention to use were used as dependent variables. Additionally, this study is unique by adding student satisfaction as a dependent variable and a mediator to examine the relationship between e-learning determinants and intention to use. A questionnaire was prepared and distributed to 324 undergraduate students from Jordan’s private universities on the basis of a convenience sample. The proposed hypotheses were investigated using the quantitative techniques of regression in SPSS and SEM in AMOS. The findings of this study revealed that student satisfaction and intention to use e-learning were positively impacted by e-learning determinants. It found that intention to use was positively impacted by student satisfaction. Furthermore, e-learning intention to use was found to be positively impacted by e-learning determinants via student satisfaction. Universities and other educational institutions are advised to identify the appropriate e-learning determinants that satisfy students’ demands and motivate them to use e-learning tools in light of the study’s findings. Private universities can accomplish their goals, stay ahead of the competition, and obtain a competitive advantage by properly understanding e-learning determinants, student satisfaction, and the application of successful e-learning solutions.
Illegal, unreported, and unregulated fishing (IUU fishing) crimes by rogue fisheries companies are rife in the sea waters of Riau Province. However, this issue is rarely reported by those provincial journalists in the online media where they work. In fact, in Riau, there are 163 online media companies and 600 competent journalists; 200 of them live in capture fisheries center areas. Apart from the journalist competency factor, the decision to make IUU fishing news can also be influenced by the fisheries company intervention that committed the crime. Besides, the policy role of media leaders—editors, editors-in-chief, and media owners—also determines journalists’ decisions to make those news stories. This research aims to analyze the influence of journalist competence and fishing company intervention on the decision to make IUU fishing news, as well as the role of media leader policy as mediators in these influences. This survey involved 100 competent journalists as respondents. Data collection was carried out through a questionnaire containing a number of closed statements measured on a 5-point Likert scale, which was distributed to respondents. The data were analyzed using the Structural Equation Modeling (SEM) method. The research results show that the fishing company intervention has a negative and significant influence on the decision to make IUU fishing news in Riau, while journalist competence does not. Additionally, media leader policy was found to play a significant role in mediating the influence of fisheries company intervention and journalist competence on the decision to make IUU fishing news. The leader policy could prevent journalists from making IUU fishing news if fisheries companies, who are responsible for those crimes, intervene and request it. Those actions of media leaders need to be questioned because they can hamper the media’s function as a means of disseminating information, educating the public, and implementing social control, especially those related to combating IUU fishing crimes.
By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
Copyright © by EnPress Publisher. All rights reserved.