The failure to achieve sustainable development in South Africa is due to the inability to deliver quality and adequate health services that would lead to the achievement of sustainable human security. As we live in an era of digital technology, Machine Learning (ML) has not yet permeated the healthcare sector in South Africa. Its effects on promoting quality health services for sustainable human security have not attracted much academic attention in South Africa and across the African continent. Hospitals still face numerous challenges that have hindered achieving adequate health services. For this reason, the healthcare sector in South Africa continues to suffer from numerous challenges, including inadequate finances, poor governance, long waiting times, shortages of medical staff, and poor medical record keeping. These challenges have affected health services provision and thus pose threats to the achievement of sustainable security. The paper found that ML technology enables adequate health services that alleviate disease burden and thus lead to sustainable human security. It speeds up medical treatment, enabling medical workers to deliver health services accurately and reducing the financial cost of medical treatments. ML assists in the prevention of pandemic outbreaks and as well as monitoring their potential epidemic outbreaks. It protects and keeps medical records and makes them readily available when patients visit any hospital. The paper used a qualitative research design that used an exploratory approach to collect and analyse data.
The purpose of this study was to assess rural students’ computational thinking abilities. The following proofs were observed: (1) Students’ abstraction affected algorithmic thinking skills; (2) Students’ decomposition influenced algorithmic thinking skills; (3) Students’ abstraction impacted evaluation skills; (4) Students’ algorithmic thinking affected evaluation skills; (5) Students’ abstraction impacted generalization skills; (6) Students’ decomposition impacted generalization skills; (7) Students’ evaluation affected generalization skills. Gender differences were observed in the relationship among the computational thinking factors of junior high school students. This included the abstraction-generalization skills; evaluation-generalization skills; and decomposition-generalization skills relationships, which were moderated by the gender of the students. 258 valid surveys were collected, and they were utilized in the study. Conducting the descriptive, reliability, and validity analyses used SPSS software, and the structural equation modeling (SEM) was also conducted through Smart PLS software to assess the hypothetical relationships. There were gender disparities in the correlation among computational thinking components of the junior high school students’ studying in rural areas. Research has shown that male and female students may have different abstractions, evaluations, and generalizations related to computational thinking, with females being more strongly associated than males in non-programming learning contexts. These results are expected to provide relevant information in subsequent analyses and implement a computational thinking curriculum to overcome the still-existing gender gaps and promote computational thinking skills.
This research aims to empirically examine the role of learning organization practices in enhancing sustainable organizational performance, utilizing knowledge management and innovation capability as mediating variables. The study was conducted in public IT companies across China, which is a vital sector for driving innovation and economic growth. A mixed-methods approach was employed, with quantitative methods accounting for 70% and qualitative methods for 30% of the research. Purposive sampling was utilized to distribute questionnaires to 546 employees from 10 public IT companies. Statistical analysis was conducted using Structural Equation Modeling (SEM). The findings indicate that learning organization practices significantly influence knowledge management practices (β = 0.785, p < 0.001) and innovation capability (β = 0.405, p < 0.001). Furthermore, knowledge management practices positively contribute to sustainable organizational performance (β = 0.541, p < 0.001), while innovation capability also has a positive effect (β = 0.143, p < 0.001). Moreover, knowledge management practices partially mediate the relationship between learning organization practices and sustainable performance, with a total effect of 0.788 (p < 0.001). The mediating role of innovation capability is also significant, with a total effect of 0.422 (p = 0.045). The study further includes qualitative in-depth interviews with 20 managers from 10 IT companies across five regions in China: East, South, West, North, and Central. Senior managers were selected through a stratified sampling method to ensure comprehensive representation by including both the largest and smallest companies in each region. These findings underscore the critical role of learning organizations in promoting sustainability through effective knowledge management and innovation capabilities within the IT sector.
The purpose of this study is to investigate different factors associated with remote online home-based learning (thereafter named OHL), including technical system quality, perceived quality of contents, perceived ease of use, and perceived usefulness in relation to the satisfaction of undergraduate students following the post-COVID-19 pandemic in Malaysia. Additionally, the mediating roles of attitude are also investigated. Two hundred questionnaires were distributed using judgmental sampling method and 156 completed responses were collected. The data were subsequently analyzed using PLS-SEM. The findings imply that the OHL system is an effective method although it is challenging to operate. In terms of perceived technical system quality, OHL is currently more gratifying for students; however, some have reported that the quality of the content delivered via the remote system is still unsatisfactory. Moreover, the study found that attitude is a significant determinant of undergraduates’ satisfaction with OHL. This study contributes to the advancement of current knowledge by inspecting the factors of the Undergraduate Level OHL System using the mediating roles of attitude. In terms of underpinning theories, Technology Acceptance Model and Information System Model were employed as the guiding principles of the current study.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Credit policies for clean and renewable energy businesses play a crucial role in supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity of these companies to prioritize lending is essential given the limited capital available. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust machine learning algorithms for addressing complex clustering problems. Additionally, hyperparameter selection within these models is effectively enhanced through the support of a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage the strength of these advanced machine learning techniques, this paper aims to develop SVM and ANN models, optimized with the PSO, for the clustering problem of green credit capacity in the renewable energy industry. The results show low Mean Square Error (MSE) values for both models, indicating high clustering accuracy. The credit capabilities of wind energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient operation of banking green credit policies.
Copyright © by EnPress Publisher. All rights reserved.