High-risk pregnancies are a global concern, with maternal and fetal well-being at the forefront of clinical care. Pregnancy’s three trimesters bring distinct changes to mothers and fetal development, impacting maternal health through hormonal, physical, and emotional shifts. Fetal well-being is influenced by organ development, nutrition, oxygenation, and environmental exposures. Effective management of high-risk pregnancies necessitates a specialized, multidisciplinary approach. To comprehend this integrated approach, a comparative literature analysis using Atlas.ti software is essential. Findings reveal key aspects vital to high-risk pregnancy care, including intervention effectiveness, case characteristics, regional variations, economic implications, psychosocial impacts, holistic care, longitudinal studies, cultural factors, technological influences, and educational strategies. These findings inform current clinical practices and drive further research. Integration of knowledge across multidisciplinary care teams is pivotal for enhancing care for high-risk pregnancies, promoting maternal and fetal well-being worldwide.
In the face of growing competition, industrial and commercial firms need more effective strategies to gain competitive advantages. This study investigates the role of enterprise risk management (ERM) as a mediator in highlighting the significance of innovation capability on profitability in industrial and commercial firms listed on the Amman Stock Exchange (ASE). Data were collected from 244 respondents using a standardized questionnaire and analyzed with SPSS software. The results indicate that the innovation capability has an impact on profitability in industrial and commercial firms, as well as their ERM practices. Additionally, ERM mediates the relationship between innovation capability and profitability. Firms that adopt distinctive innovation strategies tend to maintain formal ERM strategies, which in turn enhance market superiority and profitability. This research offers some significant managerial ramifications that may be essential for business owners, executives, and decision-makers involved in the development of firms.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
This article evaluates the Didactic Strategies for Teaching Mathematics (DSTM) program, designed to enhance the teaching of mathematical content in primary and secondary education in a hybrid modality. In alignment with SENACYT’s Gender-STEM-2040 Policy, which emphasizes gender equality as a foundational principle of education, this study aims to assess whether initial teacher training aligns with this policy through the use of mathematical strategies promoting gender equality. A descriptive-correlational approach was applied to a sample of 64 educators, selected based on their responses during the training, with the goal of improving teaching and data collection methodologies. Findings indicate that, although most teachers actively engage in training, an androcentric approach persists, with sexist language and a curriculum that renders girls invisible, hindering the fulfillment of the National Gender Equality Policy in Science, Technology, and Innovation of Panama (Gender-STEM Policy 2040). Additionally, through a serendipitous finding, a significant gap in student activity levels, especially in secondary school, was discovered. While in primary school, activity levels were similar between genders, a decline in active participation among girls in secondary school was observed. This discovery, not initially contemplated in the study’s objectives, provides valuable insights into gender differences in active participation, particularly in higher educational stages. The serendipity suggests the need for further exploration of social, environmental, and family factors that may influence this decrease in girls’ active participation. The article concludes with a preliminary diagnosis and a call to deepen gender equality training and the effective implementation of coeducation in Panama’s educational system.
Currently, there is a unique situation in the global economy, industrial eras coexist together, there is interaction and transformation of financial systems simultaneously within the framework of Industry 4.0 and Industry 5.0. New, digital resources are entering the economy, intellectual capital is becoming virtual, artificial intelligence is increasingly finding its application in the structure of financial support. Financial intermediation in developing countries is also subject to global trends, the active development of new instruments for developing economies is especially important. The aim of the study is to identify effective ways to develop financial intermediation in Industry 5.0 for the economies of developing countries. Based on the results of the study on the development of financial institutions mediation revealed a problem related to the lack of reasonable tools that could be used to improving the efficiency of the financial intermediaries market, proposed the main directions of such a process: mobilization of savings, distribution financial assets, payment system, risk management and control over market agents involved in financial operations.
Since 1999, China’s higher education has experienced significant growth, with the government dramatically increasing college enrollment rates, thereby enhancing the overall quality of education. However, most existing studies have primarily focused on the quantity of education, with little attention having been given to the impact of higher education quality (HEQ) on economic growth. This study aims to explore how higher education quality (HEQ) contributes to regional economic growth through scientific and technological innovation (STI) and human capital accumulation. Using panel data from 31 Chinese provinces from the period 1999 to 2022, panel regression models and instrumental variable methods were employed to analyze both the direct and indirect impacts of higher education quality (HEQ) on economic growth. The results confirm that improving higher education quality (HEQ) is crucial for sustaining China’s economic growth. More specifically, higher education promotes regional economic expansion both directly, by enhancing labor productivity, and indirectly, by facilitating scientific and technological innovation. Furthermore, the study suggests that the balanced distribution of educational resources across regions should be prioritized to support coordinated regional development. This research provides insights for policymakers on how balanced regional economic development can be achieved through educational and technological policies. This work also lays a foundation for future studies.
Copyright © by EnPress Publisher. All rights reserved.