The structure and diversity of tree species in a temperate forest in northwestern Mexico was characterized. Nine sampling sites of 50 × 50 m (2,500 m2) were established, and a census of all tree species was carried out. Each individual was measured for total height and diameter at breast height. The importance value index (IVI) was obtained, calculated from the variable abundance, dominance and frequency. The diversity and richness indices were also calculated. A total of 12 species, four genera and four families were recorded. The forest has a density of 575.11 individuals and a basal area of 23.54/m2. The species of Pinus cooperi had the highest IVI (79.05%), and the Shannon index of 1.74.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
In the present study, friction damper, an energy dissipating passive device is explored to reduce the response of open ground storey building under lateral loading due to earthquake. This damper is installed in the selected bays of open ground storey so that the response is reduced. The masonry infill wall is macro-modeled in the form of compression only diagonal members. Three different types of bracing system were installed along with Pall friction damper – single diagonal tension – compression brace with friction damper, tension only cross brace with friction damper and chevron brace with friction damper were modeled using Wen’s plastic link element in SAP2000. G+4 storey buildings were analyzed using nonlinear time history analysis. The storey displacement and inter-storey drift for all the cases were compared in the study.
Taking six typical forest communities in Taizhou Green Heart (ⅰ: Liquidambar formosana + Ulmus pumila + Celtis sinensis; ⅱ: Celtis sinensis + Pterocarya stenoptera + Pinus massoniana; ⅲ: Sapindus mukorossi + Sapium sebiferum + Cupressus funebris; ⅳ: Liquidambar formosana + Acer buergerianum + Cupressus funebris); ⅴ: Celtis sinensis + Ligustrum compactum + Pinus massoniana; ⅵ: Machilus ichangensis + Sapindus mukorossi + Acer buergerianum) as the research objects, 5 indicators: Shannon-Wiener (H), Patrick richness (R1), Margalef species richness (R2), Pielou evenness (J) and ecological dominance (D) were used to analyze species diversity in forest communities. The results showed that: (1) the community was rich in plant resources, with a total of 50 species belonging to 40 genus and 31 families, including 19 species in tree layer, 22 species in shrub layer and only 9 species in herb layer, few plant species; (2) the species richness and diversity index of tree layer and shrub layer were significantly higher than that of herb layer, but there were differences among different communities in the same layer, and no significant difference was reached; (3) the species richness and community diversity of the six communities showed as follows: community VI > community I > community II > community IV > community V > community III.
Taking the west slope of Cangshan Mountain in Yangbi County, Dali as the research site, on the basis of investigating the local natural geographical conditions, topography and biodiversity status of Cangshan Mountain, the CAP protection action planning method was adopted, and the priority protection objects were determined to be native forest vegetation, rare and endangered flora and fauna, alpine vertical ecosystems, hard-leaf evergreen broad-leaved forests and cold-tempered coniferous forests; The main threat factors were commercial collection, tourism development and overgrazing. Biodiversity conservation on the western slope of Cangshan Mountain should take species as “point”, regional boundary as “line”, ecosystem and landscape system as “plane”, so as to realize the overall planning structure system combining “point—line—plane”, which can be divided into conservation core area, buffer zone and experimental area. The results can provide a reference for biodiversity conservation on the western slope of Cangshan Mountain.
Ce4+-doped nanometer ZnO powder was synthesized by so-l gel method. The microstructures and properties of the samples were characterized through XRD, UV-Vis and FTIR. The results indicated that the Ce4+ was successfully incorporated into ZnO, and the diameter of the nanometer was about 10.7nm. It induced the redshifting in the UV-Vis spectra. The photocatalytic activity of the samples was investigated using methylene blue (MB) as the model reaction under irradiation with ultraviolet light. The results showed that the doping of Ce4+ could increase the photocatalytic activities of ZnO nanopowders and that the best molar ratio of Ce4+ was n(Ce)/n(Zn) = 0.05, that the surfactant was sodium dodecyl sulfate, and that the nanometer ZnO was calcinated at 550 ℃ for 3 hours. Meanwhile, it inspected the effect of photocatalytic efficiency through the pH of MB, the amount of catalyst, and illumination time. The experimental results revealed that the initial mass concentration of MB was 10 mg/L, that the pH value was 7-8, that the dosage of Ce4+/ZnO photo-catalyst was 5 g/L, that the UV-irradiation time was 2 h, and that the removal rate of MB reached above 85%. Under the optimized conditions, the degradation rate of real dye wastewater was up to 87.67% and the removal efficiency of COD was 63.5%.
Copyright © by EnPress Publisher. All rights reserved.