The cost of diagnostic errors has been high in the developed world economics according to a number of recent studies and continues to rise. Up till now, a common process of performing image diagnostics for a growing number of conditions has been examination by a single human specialist (i.e., single-channel recognition and classification decision system). Such a system has natural limitations of unmitigated error that can be detected only much later in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. At the same time Machine Intelligence (ML, AI) systems, specifically those including deep neural network and large visual domain models have made significant progress in the field of general image recognition, in many instances achieving the level of an average human and in a growing number of cases, a human specialist in the effectiveness of image recognition tasks. The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and advantages of the rapidly evolving Artificial Intelligence technology to achieve real and measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. The proposal for a collaborative AI-human image diagnostics system falls directly into the scope of this program.
Green manufacturing is increasingly becoming popular, especially in lubricant manufacturing, as more environmentally friendly substitutes for mineral base oil and synthetic additives are being found among plant extracts and progress in methodologies for extraction and synthesis is being made. It has been observed that some of the important performance characteristics need enhancement, of which nanoparticle addition has been noted as one of the effective solutions. However, the concentration of the addictive that would optimised the performance characteristics of interest remains a contending area of research. The research was out to find how the concentration of green synthesized aluminum oxide nanoparticles in nano lubricants formed from selected vegetable oils influences friction and wear. A bottom-up green synthesis approach was adopted to synthesize aluminum oxide (Al2O3) from aluminum nitrate (Al(NO3)3) precursor in the presence of a plant-based reducing agent—Ipomoea pes-caprae. The synthesized Al2O3 nanoparticles were characterized using TEM and XRD and found to be mostly of spherical shape of sizes 44.73 nm. Al2O3 nanoparticles at different concentrations—0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, and 1.0 wt%—were used as additives to castor, jatropha, and palm kernel oils to formulate nano lubricants and tested alternately on a ball-on-aluminum (SAE 332) and low-carbon steel Disc Tribometer. All the vegetable-based oil nano lubricants showed a significant decrease in the coefficient of friction (CoF) and wear rate with Ball-on-(aluminum SAE 332) disc tribometer up to 0.5wt% of the nanoparticle: the best performances (eCOF = 92.29; eWR = 79.53) came from Al2O3-castor oil nano lubricant and Al2O3-palm kernel oil; afterwards, they started to increase. However, the performance indices displayed irregular behaviour for both COF and Wear Rate (WR) when tested on a ball-on-low-carbon steel Disc Tribometer.
Xylene isomers are notorious chemical hazards, and their efficient removal from water solutions is still challenging. The current study reports a polymer nanocomposite as a potential adsorbent for successfully removing dissolved xylene isomers from contaminated water. Polystyrene-1D multiwall carbon nanotube nanocomposite (PS-MWCNT) adsorbent was prepared using the one-step bulk polymerization method. Mesoporous PS-MWCNT was prepared using the nano-crystallization phase separation method. The sulfonation of the mesoporous PS-MWCNT nanocomposites was carried out by treating the samples with concentrated sulfuric acid at elevated temperatures. The sulfonated PS-MWCNT (HO3S-PS-MWCNT) was found to be a potential adsorbent for dissolved xylene isomers from water solution. In addition, the HO3S-PS-MWCNT can be efficiently recycled for up to 10 consecutive cycles with negligible decline in adsorption values. The exhibited equilibrium adsorption, rate of adsorption, and rapid regeneration of the HO3S-PS-MWCNT are clear indications for the possibility of practical utilization of these adsorbents in large-scale water treatment plants.
Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
Quartz sand was used as bed material in a small fluidized bed reactor with 1 kg/h feed. Corn straw powder with particle size of 20–40 mesh, 40–60 mesh, 60–80 mesh and 80–120 mesh was used as raw material for rapid pyrolysis at reaction temperatures of 400 °C, 450 °C, 500 °C and 550 °C. The bio-oil obtained after liquefaction of pyrolysis gas was analyzed. The variation trend of bio-oil composition in pyrolysis of corn straw powder with different reaction temperatures and raw material sizes was compared. The results show that: (1) the content of 3-hydroxyl-2-phenyl-2-acrylic acid in bio-oil increases with the decrease of raw material particle size, but it is less at 450 °C; (2) with the increase of reaction temperature, the content of hydroxyacetaldehyde in bio-oil increases at first and then decreases: the content of hydroxyacetaldehyde in bio-oil is the highest at 500 °C when the particle size is 20–40 mesh, and the highest at 450 °C with the other three particle sizes. Compared with other particle sizes, raw material with the particle size of 60–80 mesh is not conducive to the formation of aldehyde compounds; (3) the reaction temperature of 500 °C and the particle size of 60–80 mesh of raw materials are more conducive to the formation of phenolic compounds in bio-oil; (4) the ester compounds with particle size of 20–40 mesh in bio-oil is 20% higher than that of other particle sizes; (5) the reaction temperature and the particle size of raw materials had no significant effect on the formation of ketones, alcohols and alkane compounds in bio-oils.
Copyright © by EnPress Publisher. All rights reserved.