There are several methods in the literature to find the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems. However, in all these methods, it is assumed that the product of two trapezoidal (triangular) fuzzy numbers will also be a trapezoidal (triangular) fuzzy number. Fan et al. (“Generalized fuzzy linear programming for decision making under uncertainty: Feasibility of fuzzy solutions and solving approach”, Information Sciences, Vol. 241, pp. 12–27, 2013) proposed a method for finding the fuzzy optimal solution of FFLP problems without considering this assumption. In this paper, it is shown that the method proposed by Fan et al. (2013) suffer from errors and to overcome these errors, a new method (named as Mehar method) is proposed for solving FFLP problems by modifying the method proposed by Fan et al. (2013) . To illustrate the proposed method, some numerical problems are solved.
Some developmental projects are created by people-private partnerships (PPP), particularly where recovery is acquirable by levying the users. Such PPPs are successful for construction of roads, bridges, running toilet facilities and conveyance facility in mode of use and pay. Likewise, public-scientist partnerships (PSPs) will be successful, where monitored impacts can be used to derive benefit. But such example cases are not so popular in utilizing new research results and derive benefits from natural resources and enhance productivity. There is a demand for similar partnership projects in research area. In this study modality of the PSP to create boost engine for natural resource conservation and bring economic prosperity is established. A novel PSP launch was synthesized on useful food crop viz. finger millet (Elusiane corcona (l)), which has been known since long past, and now is regaining popularity. It was possible to enhance additional annual production of 5.755 million tonnes of finger millet grain, equivalent to additional income of Rs 11,510 crores. Against this the scientist partnership share was 0.49x million tonnes grain and economic equivalency of Rs 992 crores, which was just 7–8%, with same level of input in agriculture. Additional benefits were sustainability of production and resources consecration, reduction of greenhouse gas emission (GHGs), particularly nitrous oxide (N2O), largely emanating from agriculture and responsible for depletion of ozone layer. The finger millet stiff stem will be useable for production of ply-board filling material that will be innovative building material for housing and infrastructure developments and making furniture.
China’s Belt and Road Initiative (BRI) hopes to deliver trillions of dollars in infrastructure financing to Asia, Europe, and Africa. If the initiative follows Chinese practices to date for infrastructure financing, which often entail lending to sovereign borrowers, then BRI raises the risk of debt distress in some borrower countries. This paper assesses the likelihood of debt problems in the 68 countries identified as potential BRI borrowers. We conclude that eight countries are at particular risk of debt distress based on an identified pipeline of project lending associated with BRI.
Because this indebtedness also suggests a higher concentration in debt owed to official and quasi-official Chinese creditors, we examine Chinese policies and practices related to sustainable financing and the management of debt problems in borrower countries. Based on this evidence, we offer recommendations to improve Chinese policy in these areas. The recommendations are offered to Chinese policymakers directly, as well as to BRI’s bilateral and multilateral partners, including the IMF and World Bank.
Japan’s investment in the domestic construction industry has fallen to less than half its peak in 1992. Given the country’s declining population, Japanese construction companies must go global to remain profitable. To what extent the Japanese government and Japanese companies can contribute to meeting the growing infrastructure needs in the region is unclear as Japanese companies have long been operating primarily in Japan. The Japanese government has in recent years passed a series of new laws that encourage private sector participation in financing, building and operating public infrastructure. Through involvement in such public projects, Japanese companies have developed the skills and technologies to build a variety of infrastructures that are resilient to natural disasters and adaptable to various geographical conditions and social and economic development. But the major challenge for Japanese companies is to transform their business model drastically from one that relies on the domestic market to one that contributes to the social and economic development of third countries.
A theoretical investigation of the effect of an inverse parabolic potential on third harmonic generation in cylindrical quantum wires is presented. The wave functions are obtained as solutions to Schrödinger equation solved within the effective mass approximation. It turns out that peaks of the third harmonic generation susceptibility (THGS) associated with nanowires of small radii occur at larger photon energies as compared to those associated with quantum wires of larger radii. The inverse parabolic potential red-shifts peaks of the THGS, and suppresses the amplitude of the THGS. THGS associated with higher radial quantum numbers is diminished in magnitude and blue-shifted, as a function of the photon energy. As a function of the inverse parabolic potential, the THGS still characterized by peaks, and the peaks shift to lower values of the potential as the photon energy increases.
Copyright © by EnPress Publisher. All rights reserved.