This study aimed to examine and assess the impact of the logistics industry’s environment, entry-level graduates’ characteristics and the logistics and supply chain management (LSCM) program design on the transformation of knowledge and skills at Sohar port in the Sultanate of Oman. The study employed a pragmatic research philosophy involving a structured questionnaire. The sample size included 49 mid-managers from the logistics industry who were working at Sohar Port. The study found that entry-level graduates’ characteristics and LSCM program design positively and significantly influenced the transformation of knowledge and skills. However, the organisational environment had a negative and insignificant impact on the transformation. This study revealed several dimensions that may require further research. It is pertinent to broaden the research scope to other towns, ports, and other countries in the Gulf Council Countries (GCC) to broaden the scope and generalisability of the results. According to the study findings, several recommendations are proposed for the logistics and supply chain sector in Oman to enhance the transformation of knowledge and skills by entry-level graduates, as well as for higher education institutions (HEIs). To meet the sector requirements, HEIs may improve the current university-industry collaborations by increasing the inputs of the industry in designing and developing the LSCM program. The organisational environment must reconsider the knowledge and skills transformation by entry-level graduates in their strategic plan of resources management, which must be emphasised by the remuneration system and career paths incentive. While other studies have explored knowledge and skill transformation in the context of employee training, this study aims to fill a specific research gap by focusing on the transformation of knowledge and skills by entry-level graduates, an area which has not been extensively studied before. Furthermore, this study is unique as it examines the impact of the industry’s environment, entry-level graduates’ characteristics and the LSCM program on the transformation of knowledge and skills within the unique context of Oman. This novel approach provides an opportunity to understand the specific challenges and opportunities faced by entry-level graduates in Oman and suggests strategies for addressing them.
This research investigates the relationship between Generative Artificial Intelligence (GAI), media content, and copyright laws. As GAI technologies continue to evolve and permeate various aspects of the media landscape, questions regarding the creation and protection of intellectual property have become paramount. The study aims to highlight the impact of GAI generated content, and the challenge it poses to the traditional copyright framework. Furthermore, the research addresses the evolving role of copyright laws in adapting to the dynamic landscape shaped by artificial intelligence. It investigates whether existing legal frameworks are equipped to handle the complexities introduced by GAI, or if there is a need for legislative and policy reforms. Ultimately, this research contributes to the ongoing discourse on the intersection of GAI, media, and copyrights, providing insights that can guide policymakers, legal practitioners, and industry stakeholders in navigating the evolving landscape of intellectual property in the age of artificial intelligence.
Purpose: This study investigates the mediating effect of Environmental Attachment (EA) among consumers in an emerging market, concentrating on the impact of two key factors: Green Environmental Awareness (GEA) and Sense of Responsibility (SOR) on Sustainable Product Consumption (SPC). Design/methodology/approach: A thorough online survey was carried out with Google Docs and distributed to 304 Pakistani consumers who now use or are considering purchasing sustainable or green products. Structural Equation Modeling (SEM) was used to rigorously test the suggested model utilizing a non-probability sampling technique, specifically the stratified purposive sampling approach. Findings: Green environmental awareness (GEA) and a sense of responsibility (SOR) have been shown to have a substantial impact on creating environmental attachment (EA) in both existing and potential customers of sustainable products. The findings of this study also revealed that environmental attachment (EA) plays an important role as a mediator in the links between green environmental awareness (GEA) and the consumption of sustainable goods (SPC), as well as between a sense of responsibility (SOR) and SPC. Despite this, it is crucial to note that the projected direct effect of GEA on SPC was shown to be statistically insignificant. This conclusion implies that additional factors outside the scope of this study may influence the relationship between GEA and SPC. Research limitations/implications: It is vital to highlight that the focus of this study is on an online sample of consumers near Punjab, Pakistan. Future studies should look at other parts of Pakistan to acquire a more complete picture of sustainable consumption trends. Furthermore, our findings suggest that characteristics impacting sustainable consumption, such as Green Environmental Awareness (GEA) and Sense of Responsibility (SOR), may differ among countries. As a result, performing a comparison analysis involving two or more countries could provide valuable insights into projecting sustainable product consumption among current and potential sustainable product customers. Originality/Value: This study contributes to the literature by investigating the factors of sustainable consumption using the lens of the Norm Activation Model theory (NAM), notably Green Environmental Awareness (GEA) and Sense of Responsibility (SOR), to predict sustainable product consumption. The findings are important for promoting long-term goals in Pakistan and provide a framework that can be applied in other emerging markets.
The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
This study aims to explore the implications of imported electrical equipment in Indonesia, analysing both short-term and long-term impacts using a quantitative approach. The research focuses on understanding how various economic factors, such as domestic production, international pricing, national income, and exchange rates, influence the country’s import dynamics in the electrical equipment sector. Employing an Error Correction Model (ECM) for regression analysis, the study utilises time-series data from 2007 to 2021 to delve into the complex interplay of these variables. The methodology involves a comprehensive analysis using the Augmented Dickey-Fuller and Phillips-Perron tests to assess the stationarity of the data. This approach ensures the robustness of the ECM, which is employed to analyse the short-term and long-term effects of the identified variables on electrical equipment imports in Indonesia. The results reveal significant relationships between these economic factors and import levels. In the short term, imports are shown to be sensitive to changes in domestic economic conditions and international market prices, while in the long term, the country’s economic growth, reflected through GDP, emerges as a significant determinant. The findings suggest that Indonesia’s electrical equipment import policies must adapt highly to domestic and international economic changes. In the short term, a responsive approach is required to manage the immediate impacts of market fluctuations. The study highlights the importance of aligning import strategies with broader economic growth and environmental sustainability goals for long-term sustainability. Policymakers are advised to focus on enhancing domestic production capabilities, reducing import dependency, and ensuring that environmental considerations are integral to import policies. This study contributes to understanding import dynamics in a developing country context, offering valuable insights for policymakers and industry stakeholders in shaping strategies for economic growth and sustainability in the electrical equipment sector. The findings underscore the need for a balanced, data-driven approach to managing imports, aligning short-term responses with long-term strategic objectives for Indonesia’s ongoing development and industrial advancement.
Indonesia, an emerging archipelagic nation, possesses abundant natural resources spanning marine, land (including forests and water sources), and diverse biological riches. The agricultural sector emerges as a pivotal driver of growth across the country, exhibiting extensive distribution. Consequently, there is an urgent imperative for comprehensive research to bolster and optimize the performance of this sector. This study aims to meticulously analyze and scrutinize macroeconomic variables aimed at enhancing Indonesia’s agricultural sector. Through the utilization of a dynamic panel model, the study zeroes in on crucial variables: economic growth in the agricultural sector, farmer terms of exchange, human development index, population density, inflation, average daily wages, and lagged economic growth data from each province in Indonesia. The best model for dynamic panel testing, employing both First Difference Generalized Method of Moments (FD-GMM) and Generalized Method of Moments System (SYS-GMM) approaches, is identified as the SYS-GMM model. This model exhibits unbiased and consistent estimation, as evidenced by the Arellano-Bond (AB) test and Sargan test results. The analysis conducted using this selected model reveals notable findings. Lagging agricultural sector performance, human capital measured by the Human Development Index (HDI), and farmers’ exchange rates are found to significantly and positively influence the economic growth of the agricultural sector. Conversely, inflation exerts a significant and negative impact on sectoral growth. However, wage levels and population density do not demonstrate a significant partial effect on the economic growth of the agricultural sector.
Copyright © by EnPress Publisher. All rights reserved.