The purpose of this paper is to explore the performance of ridge regression and the random forest model improved by genetic algorithm in predicting the Boston house price data set and conduct a comparative analysis. To achieve it, the data is divided into training set and test set according to the ratio of 70-30. The RidgeCV library is used to select the best regularization parameter for the Ridge regression model, and for the random forest model, the genetic algorithm is used to optimize the model's hyperparameters. The result shows that compared with ridge regression, the random forest model improved by genetic algorithm can perform better in the regression problem of Boston house prices.
This research presents a novel approach utilizing a self-enhanced chimp optimization algorithm (COA) for feature selection in crowdfunding success prediction models, which offers significant improvements over existing methods. By focusing on reducing feature redundancy and improving prediction accuracy, this study introduces an innovative technique that enhances the efficiency of machine learning models used in crowdfunding. The results from this study could have a meaningful impact on how crowdfunding campaigns are designed and evaluated, offering new strategies for creators and investors to increase the likelihood of campaign success in a rapidly evolving digital funding landscape.
With the rapid development of artificial intelligence (AI) technology, its application in the field of auditing has gained increasing attention. This paper explores the application of AI technology in audit risk assessment and control (ARAC), aiming to improve audit efficiency and effectiveness. First, the paper introduces the basic concepts of AI technology and its application background in the auditing field. Then, it provides a detailed analysis of the specific applications of AI technology in audit risk assessment and control, including data analysis, risk prediction, automated auditing, continuous monitoring, intelligent decision support, and compliance checks. Finally, the paper discusses the challenges and opportunities of AI technology in audit risk assessment and control, as well as future research directions.
The freight transport chain brings together several types of players, particularly upstream and downstream players, where it is connected to both nodal and linear logistics infrastructures. The territorial anchoring of the latter depends on a good level of collaboration between the various players. In addition to the flow of goods from various localities in the area, the Autonomous Port of Lomé generates major flows to and through the port city of Lomé, which raises questions about the sustainability of these various flows, which share the road with passenger transport flows. The aim of this study is to analyse the challenges associated with the sustainability of goods flows. The methodology is based on direct observations of incoming and outgoing flows in the Greater Lomé Autonomous District (DAGL) and semi-directive interviews with the main players in urban transport and logistics. The results show that the three main challenges to the sustainability of goods transport are congestion (28%), road deterioration (22%) and lack of parking space (18%).
The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
The government’s land registration program aims to protect communities from future land disputes. However, lack of community support presents challenges to its process and implementation. Utilizing a qualitative case study approach, this article examines these challenges from the community’s perspective, focusing on land registration, community participation, and implementation dynamics. It suggests that learning from these dynamics can enhance the program’s effectiveness, highlighting the need for a systematic approach to community involvement.
Copyright © by EnPress Publisher. All rights reserved.