This study aims to explore the asymmetric impact of renewable energy on the sectoral output of the Indian economy by analyzing the time series data from 1971 to 2019. The nonlinear autoregressive distributed lag approach (NARDL) is employed to examine the short- and long-run relationships between the variables. Most studies focus on economic growth, ignoring sectoral dynamics. The result shows that the sectoral output shows a differential dynamism with respect to the type of energy source. For instance, agricultural output responds positively to the positive shock in renewable energy, whereas industry and service output behave otherwise. Since the latter sectors depend heavily on non-renewable energy sources, they behave positively towards them. Especially, electricity produced from non-renewable energy sources significantly influences service sector output. However, growing evidence across the world is portraying the strong relationship between the growth of renewable energy sources and economic growth. However sectoral dynamism is crucial to frame specific policies. In this regard, the present paper’s result indicates that policies related to promoting renewable energy sources will significantly influence sectoral output in the long run in India.
This study delves into the role of pig farming in advancing Sustainable Development Goal (SDG) 8—Decent work and economic growth in Buffalo City, Eastern Cape. The absence of meaningful employment opportunities and genuine economic progress has remained a significant economic obstacle in South Africa for an extended period. Through a mixed-method approach, the study examines the transformative impact of pig farming as an economic avenue in achieving SDG 8. Through interviews and questionnaires with employed individuals engaged in pig farming in Buffalo City, the study further examines pig farming’s vital role as a source of decent work and economic growth. The study reveals inadequate government support and empowerment for pig farming in Buffalo City despite pig farming’s resilience and potential in mitigating socio-economic vulnerabilities and supporting community’s livelihoods. To enhance pig farming initiatives, this study recommends government’s prioritization of an enabling environment and empowerment measures for the thriving of pig farming in Buffalo City. By facilitating supportive policies and infrastructures, the government can empower locals in Buffalo City to leverage pig farming’s potential in achieving SDG 8.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
In today’s rapidly evolving organizational landscape, understanding the dynamics of employee incentives is crucial for fostering high performance. This research delves into the intricate interplay between moral and financial incentives and their repercussions on employee performance within the dynamic context of healthcare organizations. Drawing upon a comprehensive analysis of 226 respondents from three healthcare organizations in Klang Valley, Peninsular Malaysia, the study employs a quantitative approach to explore the relationships between independent variables (career growth, recognition, decision-making, salary, bonus, promotion) and the dependent variable of employee performance. The research unveils that moral incentives, including career growth, recognition, and decision-making, significantly impact employee performance. Professionals motivated by opportunities for growth, acknowledgment, and participation in decision-making demonstrate heightened engagement and commitment. In the financial realm, competitive salaries, performance-based bonuses, and transparent promotion pathways are identified as crucial factors influencing employee performance. The study advocates a holistic approach, emphasizing the synergistic integration of both moral and financial incentives. Healthcare organizations are encouraged to tailor their incentive structures to create a supportive and rewarding workplace, addressing the multifaceted needs and motivations of healthcare professionals. The implications extend beyond academia, offering practical guidance for organizations seeking to optimize workforce dynamics, foster job satisfaction, and ensure the sustainability of healthcare organizations.
In the face of growing disruptions within the unconventional business environment, this study focuses on enhancing supply chain resilience through strategically reforming resources. It highlights the importance of understanding the dynamics and interactions of resources to tackle supply chain vulnerability (SCV) in the manufacturing sector. Employing the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methodology alongside an adapted Analytic Network Process (ANP), the research investigates supply chain vulnerabilities in Pakistan’s large-scale manufacturing (LSM) public sector firms. The DANP method, through expert questionnaires, helps validate a theoretical framework by assessing the interconnectedness of supply chain readiness dimensions and criteria. Findings underscore Resource Reformation (RR) as a critical dimension, with the positive restructuring of resources identified as pivotal for public sector firms to align their operations with disruption magnitudes, advocating for a detailed analysis of resource utilization.
The author puts forward the idea that decentralized finance doesn’t act without managerial influence. The management moves from the external circuit to the internal one, there occurs self-ruling and “self-regulation” of the financial system. This indicates the appearance of a new type of financial intermediation—a cyber-social one. The potential of using decentralized finance in post-Soviet countries are formulated the following: freeing up the time of transaction participants due to the autonomy of transactions; a superior degree of information security compared to traditional forms of financial intermediation; financial intermediation cost saving, freeing up human resources; reduction in the speed of transactions; increasing accuracy in contractual relations due to the elimination of the human factor influence; stimulating the development of new business areas expands the competitive environment; information safety due to the constant creation of a large number of backup copies. At the same time, the author identified and substantiated the risks associated with decentralized financial flows, which may have an impact on the well-being of the population of post-Soviet countries. The purpose of this study is to determine the prospects for applying decentralized finance as a growth factor in the well-being of the population in post-Soviet countries.
Copyright © by EnPress Publisher. All rights reserved.