Rural sub-Saharan Africa faces limited medical access, healthcare worker shortages, and inadequate health information systems. Mobile health (mHealth) technologies offer potential solutions but remain underdeveloped in these settings. This review aims to explore the sociocultural context of mHealth adoption in rural sub-Saharan Africa to support sustainable implementation. A comprehensive Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ) search was conducted in databases like PubMed, MEDLINE, and African Journals Online, covering peer-reviewed literature from 2010 to 2024. Qualitative studies of mHealth interventions were included, with quality assessed via the Critical Appraisal Skills Program (CASP) checklist and data synthesized using a meta-ethnographic approach. Out of 892 studies, 38 met the inclusion criteria. Key findings include sociocultural factors like community trust influencing technology acceptance, local implementation strategies, user empowerment in health decisions, and innovative solutions for infrastructure issues. Challenges include privacy concerns, increased healthcare worker workload, and intervention sustainability. While mHealth can reduce healthcare barriers, success depends on sociocultural alignment and adaptability. Future interventions should prioritize community co-design, privacy protection, and sustainable, infrastructure-aware models.
The role of trace gases in the storage of heat in the atmosphere of the Earth and in the exchange of energy between the atmosphere and outer space is discussed. The molar heat capacities of the trace gases water vapor, carbon dioxide and methane are only slightly higher than those of nitrogen and oxygen. The contribution of trace gases carbon dioxide and methane to heat storage is negligible. Water vapor, with its higher concentration and conversion energies, contributes significantly to the heat storage in the atmosphere. Most of the heat in the Earth’s atmosphere is stored in nitrogen and oxygen, the main components of the atmosphere. The trace gases act as converters of infrared radiation into heat and vice versa. They are receivers and transmitters in the exchange of energy with outer space. The radiation towards space is favored compared to the reflection towards the surface of the Earth with increasing altitude by decreasing the density of the atmosphere and condensation of water vapor. Predictions of the development of the climate over a century by extrapolation are critically assessed.
Land use changes have been demonstrated to exert a significant influence on urban planning and sustainable development, particularly in regions undergoing rapid urbanization. Tehran Province, as the political and economic capital of Iran, has undergone substantial growth in recent decades. The present study employs sophisticated Geographic Information System (GIS) instruments and the Google Earth Engine (GEE) platform to comprehensively track and analyze land use change over the past two decades. A comprehensive analysis of Landsat images of the Tehran metropolitan area from 2003 to 2023 has yielded significant insights into the patterns of land use change. The methodology encompasses the utilization of GIS, GEE, and TerrSet techniques for image classification, accuracy assessment, and change detection. The Kappa coefficients for the maps obtained for 2016 and 2023 were 0.82 and 0.87 for four classes: built-up, vegetation cover, barren land, and water bodies. The findings suggest that, over the past two decades, Tehran Province has undergone a substantial decline in ecological and vegetative areas, amounting to 2.4% (458.3 km2). Concurrently, the urban area and the barren lands have expanded by 287.5 and 125.5 km2, respectively. The increase in water bodies during this period is likely attributable to the reduction of vegetation cover and dam construction in the region. The present study demonstrates that remote sensing and GIS are excellent tools for monitoring environmental and sustainable urban development in areas experiencing rapid urbanization and land use changes.
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Industrial plastics have seen considerable progress recently, particularly in manufacturing non-lethal projectile holders for shock absorption. In this work, a variety of percentages of alumina (Al2O3) and carbon black (CB) were incorporated into high-density polyethylene (HDPE) to investigate the additive material effect on the consistency of HDPE projectile holders. The final product with the desired properties was controlled via physical, thermal, and mechanical analysis. Our research focuses on nanocomposites with a semicrystalline HDPE matrix strengthened among various nanocomposites. In the presence of compatibility, mixtures of variable compositions from 0 to 3% by weight were prepared. The reinforcement used was verified by X-ray diffraction (XRD) characterization, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for thermal property investigation. Alumina particles increased the composites’ thermal system and glass transition temperature. Mechanical experiments indicate that incorporating alumina into the matrix diminishes impact resistance while augmenting static rupture stress. Scanning electron microscopy (SEM) revealed a consistent load distribution. Ultimately, we will conduct a statistical analysis to compare the experimental outcomes and translate them into mathematical answers that elucidate the impact of filler materials on the HDPE matrix.
Copyright © by EnPress Publisher. All rights reserved.