Our study investigates the relationship between firm profitability, board characteristics, and the quality of sustainability disclosures, while examining the moderating effects of financial leverage and external audit assurance. A key focus is the distinction between Big 4 and non-Big 4 audit firms. Using data from Malaysia’s top 100 publicly listed organizations from 2018 to 2020, we analyze sustainability reports based on the Global Reporting Initiative (GRI) standards. Unexpectedly, our results indicate a negative association between firm profitability and board characteristics, challenging traditional assumptions. We find that non-Big 4 audit firms significantly enhance sustainability disclosure quality, contradicting the widely held belief in the superiority of Big 4 firms. Our finding introduces the “Big 4 dilemma” in the Malaysian context and calls for a reassessment of audit firm selection practices. Our study offers new perspectives on the strategic role of board composition and audit firm selection in advancing sustainability disclosures, urging Malaysian organizations to evaluate audit firms on criteria beyond the global prestige of Big 4 firms to improve sustainability reporting.
The transportation sector in India, which is a vital engine for economic growth, is progressively facing challenges related to climate change. Increased temperature, extreme weather conditions, and rising seas threaten physical infrastructure, service delivery, and the economy. This research examines efforts towards improving the climate resilience of India’s transport sector through policy interventions. Strategies encompass broadening the focus to cover the integration of sustainability, innovative technology deployment, and adaptive infrastructure planning. Multi-sectoral measures are proposed to guarantee longevity, equity and environmental protection. National transport infrastructure will be secured, people will be enabled to move sustainably, and India will take its position in the world economy as a climate-resilient country. Long-term resource management and promoting inclusive governance are critical to agri-transportation systems that can withstand the changing climate.
Corporate social responsibility (CSR) is an important concept of modern economic theory. In the last few decades, it has become an increasingly popular marketing tool used by companies. Consumers too want to see more CSR activities, especially those focused on environmental protection. The petroleum industry produces both toxic and non-toxic waste at almost all stages of production. While petroleum companies satisfy market demand, they also want to meet consumers’ moral and ethical demands. In this light, CSR has become vital for the development of industry. This paper looks at CSR in the petroleum industry, and its effect on customer satisfaction and subsequently toward the customer repurchase intention in Malaysia. The starting point of this paper is the Stakeholder Theory. It then examines CSR endeavors within the oil and gas sector and its link to customer repurchase intentions. It also looks at the established hypotheses between the activities of CSR (Economic Responsibility, Legal Responsibility, Ethical Responsibility, Philanthropic Responsibility), customer satisfaction and repurchase intention. This paper aims to learn about the customer’s sense of fulfilment with the CSR activities, and what could be the reaction base on the customer’s expectation.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
While the notion of the smart city has grown in popularity, the backlash against smart urban infrastructure in the context of changing state-public relations has seldom been examined. This article draws on the case of Hong Kong’s smart lampposts to analyse the emergence of networked dissent against smart urban infrastructure during a period of unrest. Deriving insights from critical data studies, dissentworks theory, and relevant work on networked activism, the article illustrates how a smart urban infrastructure was turned into both a source and a target of popular dissent through digital mediation and politicisation. Drawing on an interpretive analysis of qualitative data collected from multiple digital platforms, the analysis explicates the citizen curation of socio-technic counter-imaginaries that constituted a consent of dissent in the digital realm, and the creation and diffusion of networked action repertoires in response to a changing political opportunity structure. In addition to explicating the words and deeds employed in this networked dissent, this article also discusses the technopolitical repercussions of this dissent for the city’s later attempts at data-based urban governance, which have unfolded at the intersections of urban techno-politics and local contentious politics. Moving beyond the common focus on neoliberal governmentality and its limits, this article reveals the underexplored pitfalls of smart urban infrastructure vis-à-vis the shifting socio-political landscape of Hong Kong, particularly in the digital age.
In the context of a globalized economic environment, businesses are facing an increasing number of environmental challenges, prompting them not only to pursue economic benefits but also to focus on environmental protection and social responsibility. Green supply chain management (GSCM) and green innovation have become key strategies for enterprises aiming for sustainable development. This study explores the impact of green supply chain practices on green innovation performance, with a focus on how knowledge management and organizational integration serve as mediating variables in this relationship. Grounded in the resource-based view (RBV) and knowledge-based view (KBV) theories, this research employs surveys and in-depth interviews with companies across various industries, combined with the analysis of structural equation modeling, to reveal the complex relationship between GSCM practices, knowledge management capabilities, levels of organizational integration, and green innovation performance. The results show that GSCM practices significantly enhance corporate green innovation performance through effective knowledge management and organizational integration. These findings enrich the theories of GSCM and green innovation, providing practical guidance for enterprises on how to enhance green innovation performance through strengthening knowledge management and organizational integration. Finally, this study discusses its limitations and suggests possible directions for future research, such as exploring the differences in findings across different industry backgrounds and examining other potential mediating or moderating variables.
Copyright © by EnPress Publisher. All rights reserved.