The China-Pakistan Economic Corridor (CPEC) has been one of the most prominent components of the Belt and Road Initiative (BRI). Most of the discussion on CPEC has centered around the macroeconomic effects on the economy. However, research on the fine details of CPEC’s financing structure has not been conducted. This paper aims to fill the gap by providing a detailed description of the financing of CPEC and how the money maps on to different sectors of the Pakistani economy. We also discuss some macroeconomic concerns and ways to mitigate these risks.
Hydroponics is a modern agricultural system that enables year-round plant growth. Biochar, derived from apple tree waste, and humic acid were investigated as a replacement for the Hoagland nutrient solution to grow strawberries in a greenhouse with three replications. Growth parameters, such as leaf area, the average number of fruits per plant, maximum fruit weight, and the weight of fresh and dry fruits, were measured. A 50% increase in fresh and dry fruit weight was observed in plants grown using biochar compared to the control. Additionally, the use of Hoagland chemical fertilizer led to a 25% increase in both fresh and dry weight. There was a 65% increase in the number of fruits per plant in the biochar-grown sample compared to the control. Moreover, biochar fertilizer caused a 100% increase in maximum fruit weight compared to the control and a 27% increase compared to the Hoagland chemical fertilizer. Biochar had a higher pH compared to the Hoagland solution, and such pH levels were conducive to strawberry plant growth. The results indicate that biochar has the potential to enhance the size and weight of fruits. The findings of the study demonstrate that biochar, when combined with humic acid, is a successful organic hydroponic fertilizer that improves the quality and quantity of strawberries. Moreover, this approach enables the more efficient utilization of garden waste.
Ecological environment damage events will destroy or damage the balance between animal and plant habitats and ecosystems, and even pose a threat to China’s ecological security. However, at present, there are some problems in the identification and evaluation of forest ecosystem damage, such as imperfect evaluation system, insufficient quantitative evaluation methods, imperfect damage compensation management system, and lack of analysis of the overall damage of the interaction between human activities and forest ecosystem. Based on the damaged object, the system involves a total of four first-class indicators, including physical damage, mental damage, economic forest fruit loss, forest by-products loss, processing and manufacturing loss, forest tourism loss, scientific research literature and history loss, soil conservation loss, water conservation loss, wind prevention and sand fixation loss, carbon fixation and oxygen release loss, atmospheric purification loss. There are 14 secondary indicators of emergency treatment fee and investigation and evaluation fee, as well as 22 tertiary indicators, and the value quantification method of each indicator is clarified by using market value method, alternative cost method, shadow engineering method, recovery cost method and other methods. The article also discusses the management system of forest ecosystem damage from the two aspects of forestry technology department and judicial administration department. The purpose is to provide reference for the quantification and standardization of forest ecosystem damage assessment technology and the improvement of management system.
Simple mathematical expressions are given for the betweenness centrality of nodes in trees, forests and cycles. As application, a centrality test is given for when a network might be a forest.
Copyright © by EnPress Publisher. All rights reserved.