Increasing water consumption has increased using of synthetic nutritional methods for enriching groundwater resources. Artificial feeding is a method that can save excess water for using in low level water time in underground. The purpose of this study is to evaluate the performance of the flood dispersal and artificial feeding system in the Red Garden of Shahr-e-Daghshan and improving, saving quality of the groundwater table in the area. In order to investigate the performance of these plans, an area of 1570 km2 was considered in the Southern of Shah-Reza. The statistics data from 5 years before the design of the plans (1986-2002) related to flood control fluctuations in 20 observation wells and many indicator Qanat were surveyed in this area. The annual fluctuations in the level of the station show a rise in the level of the station after the depletion of the plan. Dewatering of the first and second turns, with an increase of more than one meter above groundwater level, has had the highest impact on the level of groundwater table in the region. Reduced permeability at sediment levels, wasted flood through evaporation and wasteful exploitation of groundwater resources, cause to loss of the impact on the increase in the level and quality of groundwater in the area, especially in the dry, drought season and recent high droughts.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
In the context of contemporary global challenges such as the COVID-19 pandemic, geopolitical conflicts, and climate change, food security assumes particular significance, being an integral part of national security. This study aims to investigate the interplay between food security and national security systems, with a focus on identifying gaps in the literature and determining directions for further research. The study conducted a systematic literature review on food security and national security systems employing a rigorous and transparent process. The qualitative analysis is grounded in the quantitative one, encompassing studies from Scopus. The examination of the selected peer-reviewed articles revealed several methodological and thematic limitations in existing research: i Geographic imbalance: There is a predominant focus on developed countries, while food security issues in developing countries remain insufficiently studied; ii Insufficient explication: There is a lack of research dedicated to managerial and economic aspects of food security in the context of national security; iii Methodological constraints: There is a predominance of quantitative methods and retrospective/cross-sectional studies. Recommendations include developing comprehensive strategies at both global and national levels to enhance food stability and accessibility.
Tomato powdery mildew, fruit rot, and twig blight are all managed with Deltamethrin. Its residues could still be present in the crops, posing a health risk. The pesticide residue analysis, dissipation rate, and safety assessments were thus examined in green tomatoes. The analytical method for residue analysis was validated according to international standards. Tomato fruits and soil were used to study the dissipation of Deltamethrin 100 EC (11% w/w) at 12.5 g a.i ha−1 for the recommended dose (RD) and 25.0 g a.i ha−1 for the double of the recommended dose (DD). Ethyl acetate was used to extract residues from tomato fruit, and PSA and magnesium sulphate were used for cleanup.The fruits had recoveries ranging from 83% to 93% and the soil sample from 81.67% to 89.6%, with the limit of detection (LOQ) estimated at 0.01 mg kg−1. The matrix effect (ME) was calculated to be less than 20% for the tomato fruits and the soil.Half-lives for RD and DD were 1.95 and 1.84 days, respectively. All sampling days for both doses had dietary exposures of residues below the maximum permissible intake (MPI) of 0.16 mg person−1 day−1. The most effective method of decontaminating tomato residue containing Deltamethrin is blanching.
Copyright © by EnPress Publisher. All rights reserved.