The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
Integrating Education 4.0 in higher education necessitates a transformational leadership approach that champions innovation and technology adoption. This paper reviews the impact of transformational leadership in fostering a conducive environment for Education 4.0, emphasising personalised and technology-enhanced learning experiences. With their vision and motivational prowess, transformational leaders are crucial in steering educational institutions through digital transformation, encouraging the adoption of advanced technologies like artificial intelligence, virtual reality, and data analytics. These leaders are pivotal in nurturing a culture of continuous improvement and empowerment, actively involving team members in pursuing collective achievements and personal growth. The study highlights the importance of transformational leadership in addressing the dynamic challenges and opportunities presented by Education 4.0. By inspiring educators and students to embrace change, transformational leaders facilitate the integration of innovative teaching methods and technologies, enhancing learning outcomes and preparing students for the demands of the digital age. The findings suggest that transformational leadership is instrumental in creating a flexible, relevant, and forward-thinking educational environment that aligns with the objectives of Education 4.0. This paper advocates strategically emphasising the development of transformational leaders within academic institutions. Such leadership is essential for navigating the complexities of digital-area education, ensuring institutions remain adaptive and responsive to technological advancements, and equipping students with the necessary skills to thrive in a rapidly evolving landscape.
Puppetry is one of the traditional folk art forms with a long history in China.Puppetry is one of the traditional folk art forms with a long history in China. After it was transmitted to the Gaozhou Prefecture of Guangdong by the Fujian Zhangzhou Puppet Show during the Wanli period of the Ming Dynasty, it gradually took root in the local culture of Guangdong, and the Gaozhou Puppet Theatre was born as a result. Under the radiant influence of Cantonese Opera, the number one theatre in Lingnan, in the western part of Guangdong, the Gaozhou Puppet Theatre has been passed down through the generations, and has used the Cantonese Opera cantata, an element of Cantonese Opera that is the essence of the art, in its unique puppetry accent. Nowadays, when many "non-heritage" cultures are facing difficulties in inheritance and development, it is especially crucial for the puppet theatre of Gaozhou to be able to use the elements of Cantonese Opera's singing in the new era, so as to make Gaozhou Puppet Theatre a new life and make the public appreciate the art again by incorporating the elements of Cantonese Opera's singing.
Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert agriculture.
According to the World Health Organization (WHO), breast cancer is among the most common cancers worldwide. Most of the anticancer agents have been showing a variety of side effects. Recently, bacterial proteins have been investigated as promising anticancer agents. Azurin is a bacterial cupredoxin protein secreted from Pseudomonas aeruginosa and has been reported as a potent multi-targeting anticancer agent, which makes it an appropriate candidate for drug delivery. Azurin may be delivered to cancer cells using different carriers like polymeric micro and nanoparticles. In the present study, azurin was extracted from the bacterial host and loaded into chitosan particles. Then its effect on MCF-7 cell line was investigated. Chitosan-azurin particles were made using the ion gelation method. Results showed that chitosan-azurin particles are about 200 nm, and the loading of the protein in particles did not affect its integrity. The MTT assay showed a significant reduction in cell viability in azurin and chitosan-azurin-treated cells. The toxicity level after 5 days was 63.78% and 82.53% for free azurin and chitosan-azurin-treated cells, respectively. It seems using an appropriate carrier system for anticancer proteins like azurin is a promising tool for developing low side effect anticancer agents.
Copyright © by EnPress Publisher. All rights reserved.