This study investigates the role of property quality in shaping booking intentions within the dynamic landscape of the hospitality sector. A comprehensive approach, integrating qualitative and quantitative methodologies, is employed, utilising Airdna’s dataset spanning from July 2016 to June 2020. Multiple regression models, including interaction terms, are applied to scrutinise the moderating role of property quality. The study unveils unexpected findings, particularly a counterintuitive negative correlation between property quality and booking intentions in Model 7, challenging conventional assumptions. Theoretical implications call for a deeper exploration of contextual nuances and psychological intricacies influencing guest preferences, urging a re-evaluation of established models within hospitality management. On a practical note, the study emphasises the significance of continuous quality improvement and dynamic strategies aligned with evolving consumer expectations. The unexpected correlation prompts a shift towards more context-specific approaches in understanding and managing guest behavior, offering valuable insights for both academia and the ever-evolving landscape of the hospitality industry.
The proportion of national logistics costs to Gross Domestic Product (NLC/GDP) serve as a valuable indicator for estimating a country’s overall macro-level logistics costs. In some developing nations, policies aimed at reducing the NLC/GDP ratio have been elevated to the national agenda. Nevertheless, there is a paucity of research examining the variables that can determine this ratio. The purpose of this paper is to offer a scientific approach for investigating the primary determinants of the NLC/GDP and to advice policy for the reduction of macro-level logistics costs. This paper presents a systematic framework for identifying the essential criteria for lowering the NLC/GDP score and employs co-integration analysis and error correction models to evaluate the impact of industrial structure, logistics commodity value, and logistics supply scale on NLC/GDP using time series data from 1991 to 2022 in China. The findings suggest that the industrial structure is the primary factor influencing logistics demand and a significant determinant of the value of NLC/GDP. Whether assessing long-term or short-term effects, the industrial structure has a substantial impact on NLC/GDP compared to logistics supply scale and logistics commodity value. The research offers two policy implications: firstly, the goals of reducing NLC/GDP and boosting the logistics industry’s GDP are inherently incompatible; it is not feasible to simultaneously enhance the logistics industry’s GDP and decrease the macro logistics cost. Secondly, if China aims to lower its macro-level logistics costs, it must make corresponding adjustments to its industrial structure.
During crisis events, the government implements many policies to control the development of the crisis and stimulate the economy damaged by the crisis. The government plays a very important role during the crisis. The stock market is a reflection of a country’s economic situation. This article takes the Chinese government policies during the COVID-19 crisis as the research object and analyzes the impact of government policies on the CSI300 index. The following conclusion is drawn: not all government restrictions will cause a decline in stock market prices, among which the Wuhan lockdown policy has promoted the rise of the CSI300 index. The two stimulus policies implemented by the Chinese government are both conducive to the rise of CSI300 index. During the COVID-19 crisis, investors holding high assets, high leverage, and low profitability companies will be significantly negatively affected after the government implements restrictive policies. After the government implements stimulus policies, investors holding high asset and high leverage companies will suffer losses. Investors who hold low asset, low leverage, and high profitability companies will have profits. And this article also finds that the size of company assets is an important driving factor for abnormal returns.
The use of artificial intelligence (AI) is related to the dynamic development of digital skills. This article focuses on the impact of AI on the work of non-profit organizations that aim to help those around them. Based on 10 semi-structured interviews, it is presented here how it is possible to work with AI and in which areas it can be used—in social marketing, project management, routine bureaucracy. At the same time, workers and volunteers need to be educated in critical and logical thinking more than ever before. These days, AI is becoming more and more present in almost all the activities, bringing several benefits to those making use of it. On the one hand, by using AI in the day-to-day activities, the entities are able to substantially decrease their costs and have the advantage of being able to have, in most cases, a better and faster job done. On the other hand, those individuals that are more creative and more innovative in their line of work should not feel threatened by those situations in which organizations decide to use more AI technologies rather than human beings for the routine activities, since they will get the opportunity to perform tasks that truly require their intellectual capital and decision making abilities.
This study aims to examine the pathways through which the user experience (UX) of ChatGPT, a representative of generative artificial intelligence, affects user loyalty. Additionally, it seeks to verify whether ChatGPT’s UX varies according to a user’s need for cognition (NFC). This research proposed and examined how ChatGPT’ UX affect user engagement and loyalty and used mediation analysis using PROCESS Macro Model 6 to test the impact of UX on web-based ChatGPT loyalty. Data were collected by an online marketing research company. 200 respondents were selected from a panel of individuals who had used ChatGPT within the previous month. Prior to the survey, the study objective was explained to the respondents, who were instructed to answer questions based on their experiences with ChatGPT during the previous month. The usefulness of ChatGPT was found to have a significant impact on interactivity, engagement, and intention to reuse. Second, it was revealed that evaluations of ChatGPT may vary according to users’ cognitive needs. Users with a high NFC, who seek to solve complex problems and pursue new experiences, perceived ChatGPT’s usefulness, interactivity, engagement, and reuse intentions more positively than those with a lower NFC. These results have several academic implications. First, this study validated the role of the UX in ChatGPT. Second, it validated the role of users’ need for cognition levels in their experience with ChatGPT.
Climate change is forcing countries to take strategic measures to reduce the negative impact on future generations. In this context, sustainable finance has played a key role in sustainable development since the establishment of environmental, social and governance principles. The underlying market has developed rapidly since its inception, with green bonds being the most prominent instrument. This article aims to study the impact of green bond issues on the abnormal stock returns of stocks listed on the main Euronext indices. The sample includes 58 issues carried out between 2014 and 2022 by 21 different firms listed on the AEX (Netherlands), BEL 20 (Belgium), CAC 40 (France), ISEQ 20 (Ireland), OBX (Norway) and PSI (Portugal) indices. The methodology follows the procedures of the event study using the market model. The results show significant positive stock price reaction on the issue date. After the abnormal losses just before the issues, suggesting the reserves of this consolidating market, abnormal gains persisted for over a week, providing evidence against the weak efficiency Euronext’s financial markets. The findings are useful for policy makers and entrepreneurs to promote innovative initiatives that encourage the financing and development of environmentally sustainable infrastructures.
Copyright © by EnPress Publisher. All rights reserved.