Carbon-based hollow structured nanomaterials have become one of the hot areas for research and development of hollow structured nanomaterials due to their unique structure, excellent physicochemical properties and promising applications. The design and synthesis of novel carbon-based hollow structured nanomaterials are of great scientific significance and wide application value. The recent research on the synthesis, structure and functionalization of carbon-based hollow structured nanomaterials and their related applications are reviewed. The basic synthetic strategies of carbon-based hollow structure nanomaterials are briefly introduced, and the structural design, material functionalization and main applications of carbon-based hollow structure nanomaterials are described in detail. Finally, the current challenges and opportunities in the synthesis and application of carbon-based hollow structured nanomaterials are discussed.
This paper contributes to a long-standing debate in development practice: under what conditions can externally established participatory groups engage in the collective management of services beyond the life of a project? Using 10 years of panel data on water point functionality from Indonesia’s rural water program, the Program for Community-Based Water Supply and Sanitation, the paper explored the determinants of subnational variation in infrastructure sustainability. It then investigated positive and negative deviance cases to answer why some communities successfully engaged in system management despite being located in difficult conditions as per quantitative findings and vice versa. The findings show that differences in the implementation of community participation, driven by local social relations between frontline service providers, that is, village authorities and water user groups, explain sustainable management. This initial condition of state-society relations influences how the project is initiated, kicking off negative or positive reinforcing pathways, leading to community collective action or exit. The paper concludes that the relationships between frontline government representatives and community actors are important and are an underexamined aspect of the ability of external projects to generate successful community-led management of public goods.
Lattice Boltzmann models for diffusion equation are generally in Cartesian coordinate system. Very few researchers have attempted to solve diffusion equation in spherical coordinate system. In the lattice Boltzmann based diffusion model in spherical coordinate system extra term, which is due to variation of surface area along radial direction, is modeled as source term. In this study diffusion equation in spherical coordinate system is first converted to diffusion equation which is similar to that in Cartesian coordinate system by using proper variable. The diffusion equation is then solved using standard lattice Boltzmann method. The results obtained for the new variable are again converted to the actual variable. The numerical scheme is verified by comparing the results of the simulation study with analytical solution. A good agreement between the two results is established.
In view of the large energy consumption of the regeneration process in the chemical absorption decarburization process, on the basis of the enrichment classification flow process, the nanoscale ceramic film is used as a new heat exchanger between the enriched liquid and the regeneration gas. The porous ceramic film is capable of coupling thermal-mass transfer to effectively recover part of the water vapor and the heat carried in the regeneration gas, so as to reduce the regenerative energy consumption of the system. The effects of parameters such as regeneration temperature, flow rate, molar fraction of water vapor, and MEA enrichment temperature, flow rate, and MEA concentration of shunt on the hydrothermal recovery effect of ceramic membranes of different pore sizes and lengths were studied by using the heat recovery flux and water recovery rate as the indicators. The results show that the hydrothermal recovery performance of the ceramic membrane increases with the increase of MEA enrichment flow, but decreases significantly with the increase of the enrichment temperature. At the same time, with the increase of regenerative gas velocity and the molar fraction of water vapor in the regenerative gas, the heat recovery flux will increase. The heat recovery performance of the 10 nm ceramic membrane is better than that of the 20 nm ceramic membrane.
To deal with problems of traditional geographic information collection, such as low real-time, poor authenticity of the data, and unclear description of detailed areas, a design scheme of remote sensing-based geographic information system is proposed. The system mainly consists of information collection, imaging processing, data storage management, scene control and data transmission module. By use of remote sensing technology, the reflected and radiated electromagnetic waves of the target area are collected from a long distance to form an image, and the hue–intensity–saturation (HIS) transformation method is used to enhance the image definition. Weighted fusion algorithm is adopted to process the details of the image. The spatial database stores and manages the text and image data respectively, and establishes the attribute self-correlation mechanism to render the ground objects in the picture with SketchUp software. Finally, using RS422 protocol to transmit information can achieve the effect of multi-purpose, and enhance the anti-interference of the system. The experimental results show that the practical experience of the proposed system is excellent, the geographic information image presented is clear, and the edge details are clearly visible, which can provide users with effective geographic information data.
Copyright © by EnPress Publisher. All rights reserved.