High-quality development in China requires higher vocational education, scientific and technological innovation, and sustainable economic development. The spatial distribution patterns of these factors show higher levels in the east and coastal areas compared to the west and inland regions, emphasizing the need for coupling coordination with the social economy. This study examines the impact of sustainable economic development on the coupling coordination degree using the spatial Durbin model. The results show a positive promotion and spillover effect, with regional variations. The main factors affecting the difference in coupling coordination are the amount of technology market contracts, fiscal expenditure on science and technology, patent application authorizations, tertiary industry output value, and the number of R&D institutions. According to the grey prediction model, the coupling coordination degree is expected to increase from 2022 to 2025, but achieving primary coordination may still be challenging in some areas. Therefore, strategies that utilize regional characteristics for coordinated development should be developed to improve the level of coupling coordination and create a mutually beneficial environment.
Modern agricultural production technologies based on the widespread use of pesticides and mineral fertilizers have largely solved the problem of providing the population with food, and at the same time have generated multiple ecological, medical and environmental problems, problems of environmentally friendly and biologically valuable food products, land rehabilitation, restoration of their fertility, etc. Therefore, the emergence of new classes of pesticides with different mechanisms of action, high selectivity and low toxicity for warm-blooded animals is very modern. Currently, the development and application of new plant protection products that are not toxic to humans and animals is of global importance. Priority is given to research aimed at creating plant protection products based on microorganisms and their metabolites, as well as the search for plant substances with potential pesticide activity. In this regard, the question arose of finding new safe fertilizers that can also be economically profitable for production on an industrial scale. One of the current trends in this industry is the use of green microalgae. In this regard, the purpose of our research is the possibility of cultivating green microalgae on phosphorus production waste. During the work, traditional and modern research methods in biology were used. As a result of the work, several problems can be solved, such as the disposal of industrial waste and the production of safe biological fertilizer.
Copyright © by EnPress Publisher. All rights reserved.