Managerial coaching in training programs is an important management style that fosters effective communication between immediate supervisors and employees in sustainable organizations. This study assesses the relationship between managerial coaching in training programmes, green motivation and employee green behaviour. A questionnaire was used to collect data from employees across various positions in five public organisations in Malaysia. SmartPLS software was employed to evaluate the measurement model, structural model and test research hypotheses. The SmartPLS path model analysis results reveal that the influence of managerial coaching in training programmes on employee green behaviour is indirectly affected by green motivation. The study’s findings suggest that consistent implementation of managerial coaching in training programmes by immediate supervisors managing training activities can instigate green motivation in employees, subsequently motivating them to enhance their green behaviour. These findings provide valuable insights for practitioners, helping them understand the nuances of green motivation in training programmes and develop strategic action plans to enhance managerial coaching in training programmes. It, in turn, contributes to achieving and sustaining organisational goals and strategies in the era of globalisation and the knowledge-based economy.
This paper explores the role of the agile approach in managing interorganizational relationships in innovation networks. Design/methodology/approach. Relevant literature related to agile team management, network theory, innovation theory and knowledge management was studied. Based on collaboration between different approaches, a conceptual model for agile management of an innovation network was generated. Conceptual modeling was supplemented with graphical notation (diagram) of the main elements of the model. At the stage of testing the conceptual model, the action research method was applied, which provides an opportunity for organizational innovations to be carried out with the participation of researchers. The object of the pilot implementation of the conceptual model is the Bulgarian division of a global non-governmental organization (NGO) dedicated to community service. The organizational innovation applied in the testing of the model is related to improving the communication environment between individual teams (clubs), which are autonomous, but in the conditions of a network can generate projects for common, large-scale initiatives for community service. Findings. The pilot testing of the model shows its applicability, insofar as a traditionally managed structure switches to an agile communication model, in which horizontal connections become more frequent and knowledge between individual participants is transferred more efficiently. The possibility of decentralized decision-making creates the potential for generating numerous new and larger-scale initiatives for the benefit of the final beneficiaries. The participants in the network have also outlined some shortcomings, such as the need for better preliminary preparation when introducing organizational innovations in order to adequately explain and accept them.
Preserving roads involves regularly evaluating government policy through advanced assessments using vehicles with specialized capabilities and high-resolution scanning technology. However, the cost is often not affordable due to a limited budget. Road surface surveys are highly expected to use low-cost tools and methods capable of being carried out comprehensively. This research aims to create a road damage detection application system by identifying and qualifying precisely the type of damage that occurs using a single CNN to detect objects in real time. Especially for the type of pothole, further analysis is to measure the volume or dimensions of the hole with a LiDAR smartphone. The study area is 38 province’s representative area in Indonesia. This research resulted in the iRodd (intelligent-road damage detection) for detection and classification per type of road damage in real-time object detection. Especially for the type of pothole damage, further analysis is carried out to obtain a damage volume calculation model and 3D visualization. The resulting iRodd model contributes in terms of completion (analyzing the parameters needed to be related to the road damage detection process), accuracy (precision), reliability (the level of reliability has high precision and is still within the limits of cost-effective), correct prediction (four-fifths of all positive objects that should be identified), efficient (object detection models strike a good balance between being able to recognize objects with high precision and being able to capture most objects that would otherwise be detected-high sensitivity), meanwhile, in the calculation of pothole volume, where the precision level is established according to the volume error value, comparing the derived data to the reference data with an average error of 5.35% with an RMSE value of 6.47 mm. The advanced iRodd model with LiDAR smartphone devices can present visualization and precision in efficiently calculating the volume of asphalt damage (potholes).
This study aims to guide future research by examining trends and structures in scholarly publications about digital transformation in healthcare. We analyzed English-language, open-access journal articles related to this topic from the Scopus database, irrespective of publication year. Using tools like Microsoft Excel, VOSviewer, and Scopus Analyzer, we found a growing research interest in this area. The most influential article, despite being recent, has been cited 836 times, indicating its impact. Notably, both Western and Eastern countries contribute significantly to this field, with research spanning multiple disciplines, including computer science, medicine, engineering, business, social sciences, and health professions. Our findings can help policymakers allocate resources to impactful research areas, prioritize multidisciplinary collaboration, and promote international partnerships. They also offer insights for technology investment, implementation, and policy decisions. However, this study has limitations. It relied solely on Scopus data and didn’t consider factors like author affiliations. Future research should explore specific collaboration types and the ethical, social, policy, and governance implications of digital transformation in healthcare.
This study investigates the impact of artificial intelligence (AI) integration on preventing employee burnout through a human-centered, multimodal approach. Given the increasing prevalence of AI in workplace settings, this research seeks to understand how various dimensions of AI integration—such as the intensity of integration, employee training, personalization of AI tools, and the frequency of AI feedback—affect employee burnout. A quantitative approach was employed, involving a survey of 320 participants from high-stress sectors such as healthcare and IT. The findings reveal that the benefits of AI in reducing burnout are substantial yet highly dependent on the implementation strategy. Effective AI integration that includes comprehensive training, high personalization, and regular, constructive feedback correlates with lower levels of burnout. These results suggest that the mere introduction of AI technologies is insufficient for reducing burnout; instead, a holistic strategy that includes thorough employee training, tailored personalization, and continuous feedback is crucial for leveraging AI’s potential to alleviate workplace stress. This study provides valuable insights for organizational leaders and policymakers aiming to develop informed AI deployment strategies that prioritize employee well-being.
Copyright © by EnPress Publisher. All rights reserved.