In the fast-paced modern society, enhancing employees’ professional qualities through training has become crucial for enterprise development. However, training satisfaction remains under-studied, particularly in specialized sectors such as the coal industry. Purpose: This study aims to investigate the impact of personal characteristics, organizational characteristics, and training design on training satisfaction, utilizing Baldwin and Ford’s transfer of training model as the theoretical framework. The study identifies how these factors influence training satisfaction and provides actionable insights for improving training effectiveness in China’s coal industry. Design/Methodology/Approach: A cross-sectional design that allowed the study to capture data at one point in time from a large sample of employees was employed to conduct an online survey involving 251 employees from the Huaibei Mining Group in Anhui Province, China. The survey was administered over three months, capturing a diverse sample with nearly equal gender distribution (51% male, 49% female) and a majority aged between 21 and 40. The participants represented various educational backgrounds, with 52.19% holding an undergraduate degree and most occupying entry-level positions (74.9%), providing a broad workforce representation. Findings: The research indicated that personal traits were the chief predictor of training satisfaction, showing a beta coefficient of 0.585 (95% CI: [0.423, 0.747]). Linear regression modeling indicates that training satisfaction is strongly related to organizational attributes (β = 0.276 with a confidence interval of 95% [0.109, 0.443]). In contrast, training design did not appear to be a strong predictor (β = 0.094, 95% CI: [−0.012, 0.200]). Employee training satisfaction was the principal outcome measure, measured with a 5-point Likert scale. The independent variables covered personal characteristics, organizational characteristics, and training design, all measured through validated items taken from former research. The consistency of the questionnaire from the inside was strong, as Cronbach’s alpha values stood between 0.891 and 0.936. We completed statistical testing using SPSS 27.0, complemented by multiple linear regression, to study the interactions between the variables. Practical implications: This research contributes to the literature by emphasizing the necessity for context-specific training approaches within the coal industry. It highlights the importance of considering personal and organizational characteristics when designing training programs to enhance employee satisfaction. The study suggests further exploration of the multifaceted factors influencing training satisfaction, reinforcing the relevance of Baldwin and Ford’s theoretical model in understanding training effectiveness. Ultimately, the findings provide valuable insights for organizations seeking to improve training outcomes and foster a more engaged workforce. Conclusion: The study concluded that personal and organizational characteristics significantly impact employee training satisfaction in the coal industry, with personal characteristics being the strongest predictor. The beta coefficient for personal characteristics was 0.585, indicating a strong positive relationship. Organizational characteristics also had a positive effect, with a beta coefficient of 0.276. However, training design did not show a significant impact on training satisfaction. These findings highlight the need for coal companies to focus on personal and organizational factors when designing training programs to enhance satisfaction and improve training outcomes.
Credit policies for clean and renewable energy businesses play a crucial role in supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity of these companies to prioritize lending is essential given the limited capital available. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust machine learning algorithms for addressing complex clustering problems. Additionally, hyperparameter selection within these models is effectively enhanced through the support of a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage the strength of these advanced machine learning techniques, this paper aims to develop SVM and ANN models, optimized with the PSO, for the clustering problem of green credit capacity in the renewable energy industry. The results show low Mean Square Error (MSE) values for both models, indicating high clustering accuracy. The credit capabilities of wind energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient operation of banking green credit policies.
This study investigates the relationships among entrepreneurship, technical competency, and business performance, focusing on CEOs in the beauty service industry in the Busan area. A total of 215 survey responses were collected, with 213 valid responses selected for final analysis after excluding 2 unsuitable responses. The key findings of the study are as follows: First, entrepreneurship was found to partially influence technical competency. Second, technical competency was found to influence business performance. Third, entrepreneurship was found to partially influence business performance. Fourth, technical competency was found to partially mediate the relationship between entrepreneurship and business performance. Based on these results, the study systematically analyzes and explains the causal relationships among the entrepreneurship of CEOs in the beauty service industry, their technical competency, and business performance. It also seeks to provide useful reference materials for strengthening the innovation and competitiveness of CEOs in the beauty service industry and establishing a theoretical foundation for future research in related fields.
This research investigates the relationship between the quality of airline services, customer satisfaction, and brand loyalty with low-cost airlines in Bangkok’s aviation business. It uses structural equation modeling (SEM) to examine the replies of 521 passengers. The study demonstrates a robust and favorable correlation between the quality of service and customer satisfaction, with a direct impact coefficient of 0.961. Furthermore, service quality directly (0.708) and indirectly (0.284) impact brand loyalty. These impacts are mediated by customer satisfaction, which directly affects brand loyalty with a correlation of 0.296. The model explains 92.3% and 99.0% of the variation in customer satisfaction and brand loyalty, respectively, suggesting a robust and reliable match. The demographic study reveals that the predominant group of participants consists of well-educated, middle-income women who regularly use airline services. These results highlight the importance of service quality in improving customer satisfaction and promoting brand loyalty among travelers. Airlines should emphasize the ongoing enhancement of service quality and customer satisfaction to sustain their competitive edge. This research enhances the existing body of knowledge by emphasizing the intermediate function of customer satisfaction and presenting detailed observations relevant to Bangkok’s aviation industry, providing guidance for infrastructural development and investment. It also offers practical suggestions for managing service quality and implementing customer retention strategies.
This project analyzes the evolution of the manufacturing sector in Portugal from 2009 to 2021, focusing on the variations in the number of active companies across various subcategories, such as food, textiles, and metal product industries. The goal of this analysis is to understand the dynamics of growth and contraction within each sector, providing insights for companies to adjust their market and operational strategies. Key objectives include analyzing the overall evolution in the number of companies, identifying subcategories with notable changes, and providing a comprehensive analysis of observed trends and patterns. The study is based on data from PORDATA 2024, and the research employs temporal trend analysis, linear and quadratic regression, and the Pareto representation to identify patterns of growth and decline. By comparing annual data, the project uncovers periods of growth and decline, allowing for a deeper understanding of the sector’s dynamics. The findings also highlight variations in periods of economic crises and during the Covid-19 pandemic, and recommendations for action are presented to support businesses resilience and continuity. These results are valuable for companies within the manufacturing sectors analyzed and policy makers, guiding strategic decisions to navigate the complexities of the market dynamics and to ensuring long-term organizational sustainable success.
Copyright © by EnPress Publisher. All rights reserved.