This paper presents a quantitative exploration of the functionality of cost accounting systems and their determinants in social welfare organizations. We conducted a questionnaire survey of managers of social welfare organizations running special nursing homes for the elderly and conducted a cluster analysis based on the data collected. The questionnaire was created based on the scales used in previous studies, with some new scales developed. For data analysis, the statistical analysis environment R was used. The clValid package of R was used to assess the validity of the cluster analysis. Based on the results of the analysis in this paper, it is expected that social welfare organizations that pursue cost leadership strategies and have a strong public interest orientation will benefit greatly by being able to utilize a highly functional cost accounting system. Such organizations will be able to improve their business efficiency by utilizing cost information, and their social contribution activities based on the resulting resources will truly be a contribution to public welfare. The findings from this study are of practical significance because they can be used by business managers of social welfare organizations to review the functionality of their cost accounting systems. We also focus on the degree to which nonprofit organizations focus on social contribution activities (in this paper, we call this public interest orientation). The public interest orientation of an organization is thought to affect the functionality of the cost accounting system in the same way as the organization’s strategy, but there has not been enough quantitative research on this point. By focusing on the public interest orientation of social welfare organizations, this study contributes to deepening our knowledge in this area.
The purpose of this research is to estimate the differences in sales levels between businesses owned by individuals who self-identify as Indigenous (IE) and those who do not (NIE), as well as between males (ME) and females (WE), and how this intersection may affect their sales levels. To accomplish this, an Analysis of Variance (ANOVA) is used to compare the means between the groups analyzed, and Tukey’s Honestly Significant Differences (HSD) is used to determine the magnitude and direction of these differences. The results of the study show that indigenous-owned businesses have sales that are 26% lower than the general average, while women-owned businesses have sales that are 70.6% lower in the same comparison. In addition, businesses run by indigenous women have sales that are 93.5% lower on average. These findings suggest that the challenges faced by entrepreneurs reflect the structural inequalities observed in other areas of society and highlight the need for public and private policies focused on reducing these gaps.
This study explores the scale efficiency of four star hotels in a small tourist destination in Croatia. The number of overnight stays and the increase in hotel beds are two indicators of the development of a tourist destination. Among the accommodation facilities, hotels play a significant role in the development of a tourist destination, but they are increasingly facing a labor force crisis. Data envelopment analysis is used to rank hotels by efficiency coefficient. The aim of the paper is to investigate the efficiency of the hotel by taking certain inputs and outputs, which are explained in detail in the paper. The paper uses the CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and Cooper) models to calculate hotel scale efficiency and also presents an overview of previous research around the world.
In order to create the possibility of economic breakthrough development, remove economic institutional bottlenecks, release resources, and develop the economy quickly and sustainably in Vietnam in the coming time, it is impossible not to mention solutions to improve the quality, create breakthroughs in training and fostering talents. This is one of the important solutions in the context that the Party and State require the application and development of science and technology more and more extensively in all fields and all sectors in Vietnam. The article focuses on researching the the political basis, legal basis, and practical basis for training, fostering, attracting and employing talents in Vietnam. Meanwhile, statistics on undergraduate and postgraduate training in the period of 2016–2022, the training level of the workforce and the Global Talent Competitiveness Index show that Vietnam has not achieved many positive changes in training, fostering, attracting and employing talents as expected. The article is approached from many different aspects, including the perspective of leaders and managers at the head of state agencies, the perspective of businesses and the perspective of the university teaching staff and scientific research workers themselves. On that basis, the article points out the key contents that need addressing so as to build solutions to improve quality, create breakthroughs in training, fostering, attracting and employing talents in Vietnam in the context of international integration and science and technology development. The main contributions of the article focus on the identification of the concept of “talent”, the criteria for determining “talent” and the renewal of awareness of policies and laws on training, fostering, attracting, employing, introducing and recommending talents.
This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
Copyright © by EnPress Publisher. All rights reserved.