Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.
Renewable energy is gaining momentum in developing countries as an alternative to non-renewable sources, with rooftop solar power systems emerging as a noteworthy option. These systems have been implemented across various provinces and cities in Vietnam, accompanied by government policies aimed at fostering their adoption. This study, conducted in Ho Chi Minh City, Vietnam investigates the factors influencing the utilization of rooftop solar power systems by 309 individuals. The research findings, analyzed through the Partial least squares structural equation modeling (PLS-SEM) model, reveal that policies encouragement and support, strategic investment costs, product knowledge and experience, perceived benefits assessment, and environmental attitudes collectively serve as predictors for the decision to use rooftop solar power systems. Furthermore, the study delves into mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also furnishes policymakers with evidence to chart new directions for encouraging the widespread adoption of solar power systems.
Photocatalysis, an innovative technology, holds promise for addressing industrial pollution issues across aqueous solutions, surfaces, and gaseous effluents. The efficiency of photodegradation is notably influenced by light intensity and duration, underscoring the importance of optimizing these parameters. Furthermore, temperature and pH have a significant impact on pollutant speciation, surface chemistry, and reaction kinetics; therefore, process optimization must consider these factors. Photocatalytic degradation is an effective method for treating water in environmental remediation, providing a flexible and eco-friendly way to eliminate organic contaminants from wastewater. Selectivity in photocatalytic degradation is achieved by a multidisciplinary approach that includes reaction optimization, catalyst design, and profound awareness of chemical processes. To create efficient and environmentally responsible methods for pollution removal and environmental remediation, researchers are working to improve these components.
The cost of diagnostic errors has been high in the developed world economics according to a number of recent studies and continues to rise. Up till now, a common process of performing image diagnostics for a growing number of conditions has been examination by a single human specialist (i.e., single-channel recognition and classification decision system). Such a system has natural limitations of unmitigated error that can be detected only much later in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. At the same time Machine Intelligence (ML, AI) systems, specifically those including deep neural network and large visual domain models have made significant progress in the field of general image recognition, in many instances achieving the level of an average human and in a growing number of cases, a human specialist in the effectiveness of image recognition tasks. The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and advantages of the rapidly evolving Artificial Intelligence technology to achieve real and measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. The proposal for a collaborative AI-human image diagnostics system falls directly into the scope of this program.
Healthcare mobile applications satisfy different aims by frequently exploiting the built-in features found in smart devices. The accessibility of cloud computing upgrades the extra room, whereby substances can be stored on external servers and obtained directly from mobile devices. In this study, we use cloud computing in the mobile healthcare model to reduce the waste of time in crisis healthcare once an accident occurs and the patient operates the application. Then, the mobile application determines the patient’s location and allows him to book the closest medical center or expert in some crisis cases. Once the patient makes a reservation, he will request help from the medical center. This process includes pre-registering a patient online at a medical center to save time on patient registration. The E-Health model allows patients to review their data and the experiences of each specialist or medical center, book appointments, and seek medical advice.
Vietnamese e-commerce has recently experienced a robust growth, especially e-commerce platforms such as Shopee, Lazada, Tiki. Reverse logistics has been pointed out as having a significant impact on the performance of an e-commerce platform. To capture the actual impact of some reverse logistics factors, i.e, Return Processing Time (RPT), Return Policy (RP), Return Cost (RC), Customer Service (CSR), and Post-Return Product (PRP), on Customer Satisfaction (CS), an OLS model was conducted. The results indicated significant correlation between all independent variables and dependent variables, which CSR shows the greatest correlation and PRP shows the weakest correlation. The study then made some suggestions for e-commerce platforms in Vietnam to enhance their reverse logistics process to get higher customer satisfaction.
Copyright © by EnPress Publisher. All rights reserved.