This study aimed to examine the impact of digital leadership among school principals and evaluate the mediating effect of Professional Learning Communities (PLCs) on enhancing teachers’ innovation skills for sustainable technology integration, both in traditional classroom settings and e-learning environments. Employing a quantitative approach with a regression design model, Structural Equation Modelling (SEM) and Partial Least Squares (PLS-SEM) were utilized in this research. A total of 257 teachers from 7 excellent senior high schools in Makassar city participated in the study, responding to the questionnaires administered. The study findings indicate that while principal digital leadership does not directly influence teachers’ innovation skills in technology integration, it directly impacts Professional Learning Communities (PLCs). Moreover, PLCs themselves have a significant influence on teachers’ innovation skills in technology integration. The structural model presented in this study illustrates a noteworthy impact of principal digital leadership on teachers’ innovation skills for technology integration through Professional Learning Communities (PLCs), with a coefficient value of 47.4%. Principal digital leadership is crucial in enhancing teachers’ innovation skills for sustainable technology integration, primarily by leveraging Professional Learning Communities (PLCs). As a result, principals must prioritize the creation of supportive learning environments and implement programs to foster teachers’ proficiency for sustainable technology integration. Additionally, teachers are encouraged to concentrate on communication, collaboration, and relationship-building with colleagues to exchange insights, address challenges, and devise solutions for integrating technology, thereby contributing to sustained school improvement efforts. Finally, this research provides insights for school leaders, policymakers, and educators, emphasizing the need to leverage PLCs to enhance teaching practices and student outcomes, particularly in sustainable technology integration.
The objective of this work was to analyze the effect of the use of ChatGPT in the teaching-learning process of scientific research in engineering. Artificial intelligence (AI) is a topic of great interest in higher education, as it combines hardware, software and programming languages to implement deep learning procedures. We focused on a specific course on scientific research in engineering, in which we measured the competencies, expressed in terms of the indicators, mastery, comprehension and synthesis capacity, in students who decided to use or not ChatGPT for the development and fulfillment of their activities. The data were processed through the statistical T-Student test and box-and-whisker plots were constructed. The results show that students’ reliance on ChatGPT limits their engagement in acquiring knowledge related to scientific research. This research presents evidence indicating that engineering science research students rely on ChatGPT to replace their academic work and consequently, they do not act dynamically in the teaching-learning process, assuming a static role.
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
STEAM (science, technology, engineering, arts, and mathematics) education has recently been encouraged and attracted much national attention. This qualitative study aimed to conduct a thematic analysis of college student STEAM open responses to provide an examination of college students’ perceptions of their STEAM experiences into the STEAM field. Based on transformative learning theory, a thematic analysis of 756 written responses to seven prompts by 108 college student participants revealed three primary themes: (1) exciting and challenging difficulties, and transdisciplinary learning in STEAM; (2) STEAM learning of gradual process, problem-oriented instruction, and creative problem solving; and (3) metacognition development in STEAM. The findings revealed that undergraduates’ STEAM perceptions provide strong support for STEAM implementation to enhance teaching effectiveness in higher education.
Copyright © by EnPress Publisher. All rights reserved.