This study aims to guide future research by examining trends and structures in scholarly publications about digital transformation in healthcare. We analyzed English-language, open-access journal articles related to this topic from the Scopus database, irrespective of publication year. Using tools like Microsoft Excel, VOSviewer, and Scopus Analyzer, we found a growing research interest in this area. The most influential article, despite being recent, has been cited 836 times, indicating its impact. Notably, both Western and Eastern countries contribute significantly to this field, with research spanning multiple disciplines, including computer science, medicine, engineering, business, social sciences, and health professions. Our findings can help policymakers allocate resources to impactful research areas, prioritize multidisciplinary collaboration, and promote international partnerships. They also offer insights for technology investment, implementation, and policy decisions. However, this study has limitations. It relied solely on Scopus data and didn’t consider factors like author affiliations. Future research should explore specific collaboration types and the ethical, social, policy, and governance implications of digital transformation in healthcare.
This study investigates the impact of artificial intelligence (AI) integration on preventing employee burnout through a human-centered, multimodal approach. Given the increasing prevalence of AI in workplace settings, this research seeks to understand how various dimensions of AI integration—such as the intensity of integration, employee training, personalization of AI tools, and the frequency of AI feedback—affect employee burnout. A quantitative approach was employed, involving a survey of 320 participants from high-stress sectors such as healthcare and IT. The findings reveal that the benefits of AI in reducing burnout are substantial yet highly dependent on the implementation strategy. Effective AI integration that includes comprehensive training, high personalization, and regular, constructive feedback correlates with lower levels of burnout. These results suggest that the mere introduction of AI technologies is insufficient for reducing burnout; instead, a holistic strategy that includes thorough employee training, tailored personalization, and continuous feedback is crucial for leveraging AI’s potential to alleviate workplace stress. This study provides valuable insights for organizational leaders and policymakers aiming to develop informed AI deployment strategies that prioritize employee well-being.
The Republic of Moldova is a state with a small, but dynamic economy and which, with the help of competitiveness in the IT industry, is looking for a place on the economic market in the Eastern European region. The research approaches this topic from an economic, historical, but also geopolitical point of view. This analysis of economic data and figures from the last period, combined with government policies and that of the National Bank of Moldova, means that in the near future the software economic area of Moldova will become an important regional player in this part of Europe.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
This study explores the scale efficiency of four star hotels in a small tourist destination in Croatia. The number of overnight stays and the increase in hotel beds are two indicators of the development of a tourist destination. Among the accommodation facilities, hotels play a significant role in the development of a tourist destination, but they are increasingly facing a labor force crisis. Data envelopment analysis is used to rank hotels by efficiency coefficient. The aim of the paper is to investigate the efficiency of the hotel by taking certain inputs and outputs, which are explained in detail in the paper. The paper uses the CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and Cooper) models to calculate hotel scale efficiency and also presents an overview of previous research around the world.
Copyright © by EnPress Publisher. All rights reserved.