This study examines the crucial role of digital marketing in promoting sustainable tourism in the villages of Bali. It adopts a mixed methods approach, using qualitative and quantitative data collection and analysis. The qualitative data were obtained from semi-structured interviews with management teams who have experience in implementing digital marketing strategies for village tourism. The interviewees were selected using a purposive sampling technique. The quantitative data were gathered from questionnaires distributed to domestic tourists who visited the villages. The questionnaires measured the tourists’ perceptions of digital marketing as a tool for village tourism marketing. The study found that digital marketing plays a vital role in promoting tourism villages, as most tourists learned about the villages through online media. The study also identified five dimensions of digital marketing, namely website media, social media, search engines, email marketing, and online advertising, which have potential effects on the sustainability of tourism villages. The study conducted statistical tests to examine the effects of 20 indicators of digital marketing on village tourism marketing. The results showed that 16 indicators had a significant positive effect, while four indicators had no effect. These findings suggest that digital marketing is an effective way to market tourism villages and enhance their sustainability.
The application of quality management methods and tools is an important prerequisite for the success and performance increase of manufacturing enterprises. The paper deals with the application of methods and tools of quality management (MTQM) in manufacturing enterprises. The paper aims to analyze whether there is a relationship between the application of MTQM and the size of enterprises, the use of MTQM, and the performance of enterprises measured through the achieved profit. It also analyzes the impact of MTQM on the agility of manufacturing enterprises measured through the decrease in sales expressed in revenues during the pandemic period. The paper presents the results of the research which was conducted between 2020–2022. Several statistical tools such as the Chi-square goodness-of-fit test, Pearson’s chi-square test, and contingency analysis were used to evaluate the different analyses as well as the representativeness of the sample. Based on the results, it can be concluded that there are differences in the use of MTQM and the size of the enterprise as well as the performance of the enterprises. At the same time, the hypothesis that enterprises using a wider range of quality management methods and tools have a higher potential to adapt to unexpected market changes was also confirmed.
Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
This contribution questions young people’s access to digital networks at the scale of intermediate cities in Saint-Louis. Thus, it analyzes the prescriptions of digital actors responsible for the development of digital economy in relation with the orientations of the Senegal Digital 2025 strategy. This is a pretex to highlight the gaps between official political discourses and the level of deployment of digital infrastructures. The study highlights the need to repoliticize the needs of populations for broadband and very high-speed connections to promote local initiatives for youth participation in Saint-Louis. Indeed, datas relating to access and use of the Internet by young people reveal inequalities linked to household income, the disparity of infrastructure and digital equipment, and the discontinuity in neighborhood development, but also to the adaptability of the internet service marketed. Through urban and explanatory sociology mobilized through the approach of young people’s real access to the Internet, our analyzes have shown at the scale of urban neighborhoods the impact of the actions recommended by those involved in the development of populations’ access to Internet. The result is that the majority of young people are forced to access the Internet through medium-speed mobile networks.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
Copyright © by EnPress Publisher. All rights reserved.