The study of authoritarian leadership has undergone significant development, with researchers exploring its different dimensions and consequences. This leadership style, characterized by a top-down approach and centralized decision-making authority, has been extensively examined in psychology, organizational behavior, and management literature. Scholars have delved into the effects of authoritarian leadership on various aspects of organizations such as employee satisfaction, motivation levels, productivity rates, turnover rates, and team dynamics. The research landscape surrounding authoritarian leadership has witnessed a recent surge in interest as scholars strive to understand its intricate connections with different variables. The primary objective of this study is to conduct a comprehensive bibliometric analysis on authoritarian leadership, aiming to identify the key research areas, influential authors, prominent journals in the field, and citation patterns. To our knowledge, no bibliometric analysis on authoritarian leadership can be found in the Scopus database, highlighting the novelty of our research. Through a source-based examination of scholarly articles and their citations pertaining to authoritarian leadership, this analysis offers valuable insights into the current state of research in this domain. By focusing on publications from the past decade onwards, we aim to uncover trends and potential gaps within existing literature while also providing guidance for future research endeavors. Our research findings will provide valuable insights into the phenomenon of authoritarian leadership, contributing to a deeper understanding of its implications. By delving into this topic, we hope to pave the way for future studies and investigations in this field that can build upon our findings and expand knowledge even further.
In the context of contemporary global challenges such as the COVID-19 pandemic, geopolitical conflicts, and climate change, food security assumes particular significance, being an integral part of national security. This study aims to investigate the interplay between food security and national security systems, with a focus on identifying gaps in the literature and determining directions for further research. The study conducted a systematic literature review on food security and national security systems employing a rigorous and transparent process. The qualitative analysis is grounded in the quantitative one, encompassing studies from Scopus. The examination of the selected peer-reviewed articles revealed several methodological and thematic limitations in existing research: i Geographic imbalance: There is a predominant focus on developed countries, while food security issues in developing countries remain insufficiently studied; ii Insufficient explication: There is a lack of research dedicated to managerial and economic aspects of food security in the context of national security; iii Methodological constraints: There is a predominance of quantitative methods and retrospective/cross-sectional studies. Recommendations include developing comprehensive strategies at both global and national levels to enhance food stability and accessibility.
Distributed Energy Resources (DERs), such as solar photovoltaic (PV) systems, wind turbines, and energy storage systems, offer many benefits, including increased energy efficiency, sustainability, and grid reliability. However, their integration into the smart grid also introduces new vulnerabilities to cyber threats. The smart grid is becoming more digitalized, with advanced technologies like Internet of Things (IoT) devices, communication networks, and automation systems that enable the integration of DER systems. While this enhances grid efficiency and control, it creates more entry points for attackers and thus expands the attack surface for potential cyber threats. Protecting DERs from cyberattacks is crucial to maintaining the overall reliability, security, and privacy of the smart grid. The adopted cybersecurity strategies should not only address current threats but also anticipate future dangers. This requires ongoing risk assessments, staying updated on emerging threats, and being prepared to adapt cybersecurity measures accordingly. This paper highlights some critical points regarding the importance of cybersecurity for Distributed Energy Resources (DERs) and the evolving landscape of the smart grid. This research study shows that there is need for a proactive and adaptable cybersecurity approach that encompasses prevention, detection, response, and recovery to safeguard these critical energy systems against cyber threats, both today and in the future. This work serves as a valuable tool in enhancing the cybersecurity posture of utilities and grid-connected DER owners and operators. It allows them to make informed decisions, protect critical infrastructure, and ensure the reliability and security of grid-connected DER systems in an evolving energy landscape.
Cellulose nanocrystal, known as CNCs, is a form of material that can be produced by synthesizing carbon from naturally occurring substances, such as plants. Due to the unique properties it possesses, including a large surface area, impressive mechanical strength, and the ability to biodegrade, it draws significant attention from researchers nowadays. Several methods are available to prepare CNC, such as acid hydrolysis, enzymatic hydrolysis, and mechanical procedures. The characteristics of CNC include X-ray diffraction, transmission electron microscopy, dynamic light scattering, etc. In this article, the recent development of CNC preparation and its characterizations are thoroughly discussed. Significant breakthroughs are listed accordingly. Furthermore, a variety of CNC applications, such as paper and packaging, biological applications, energy storage, etc., are illustrated. This study demonstrates the insights gained from using CNC as a potential environmentally friendly material with remarkable properties.
Polymers obtained from renewable sources are gaining popularity over their petroleum based counter parts in recent years due to their capability to address the environmental pollution related concerns emanating from the widespread usage of synthetic polymers. Even though the polymers from renewable sources are attractive in an environmental point of view, some of the property limitations and the high cost of these materials pose limitations for their extensive commercial applications. These aspects opened the door for a large chunk of research activities in development of polyblends and composites containing polymers from renewable sources as one of the components. Poly (lactic acid) (PLA) is one of the most discussed and commercialized polymer originated from renewable resources. Even though it has many useful properties, certain disadvantages like high brittleness, low impact resistance etc. limit the wide spread commercialization of PLA. In this review article, the recent research activities which are aimed to fill this gap by various modifications of PLA are discussed with special emphasis on the latest research advancements in the field of biodegradable and non biodegradable systems containing PLA.
Copyright © by EnPress Publisher. All rights reserved.