Interconnected components of holistic development, such as being thankful, addressing basic psychological needs, and acting effectively toward others, should be a priority for college athletes. Athletes at the College level need all-encompassing support systems to ensure their health, happiness, and success because of the special difficulties they have juggling their academic, athletic, and personal schedules. Problems with work-life balance, stress, and performance expectations all impede College Student Athletes’ holistic development. A thorough plan that considers all of the social, emotional, and psychological aspects impacting athlete development is necessary to overcome these obstacles. An Integrated Holistic Development Program for College Athletes (IHDP-CA) is suggested in this paper as a method that incorporates various aspects of positive psychology, mindfulness, resilience training, and the enhancement of interpersonal skills. Athletes at the College level can benefit from this all-encompassing program’s emphasis on helping others, developing an attitude of gratitude, and meeting basic psychological requirements. Sports counseling services, schools, and College athletic teams can all benefit from the IHDP-CA. A more positive and supportive sporting environment can be achieved when the program takes a more holistic approach to athletes’ needs, improving their mental health, social connections, and overall performance. The possible effect of the IHDP-CA on the holistic development outcomes of College Student-Athletes will be predicted through simulation analysis. To gain a better understanding of the program’s long-term viability, efficacy, and scalability, this analysis will run simulations of different situations and tweak program settings.
This study aims to explore the feasibility of using virtual reality technology to educate students with learning difficulties in the Asir region. To achieve the study aims, the researcher employed a descriptive design and deployed a quantitative technique, depending on the questionnaire as the main instrument for data collection. The research was carried out on a cohort of 240 educators hailing from the Asir region who were enlisted through a process of random sampling. The results of this study show that factors like infrastructure, human resources, administrative regulation, and student population have an impact on the use of virtual reality technology. The results suggest that there are no statistically significant differences in the development of using virtual reality technology among teachers of students with learning disabilities in the Asir region when taking into account factors such as experience and level of qualification.
This study aims to investigate the impact of dance training on the mental health of college students. Utilizing experimental research methods, we established an experimental group and a control group to compare changes in mental health dimensions—including anxiety, depression, self-esteem, and social skills—between the two groups before and after 12 weeks of dance training. The findings indicate that dance training significantly reduces levels of anxiety and depression, while also improving self-esteem and social skills, thereby enhancing social adaptability. These results provide empirical support for the use of dance as an intervention for mental health and offer new insights for mental health education in colleges and universities.
Technical Pedagogical Content Knowledge (TPACK) encompasses teachers’ understanding of the intricate interplay among technology, pedagogy, and subject matter expertise, serving as the essential knowledge base for integrating technology into subject-specific instruction. Over the decade, advancements in information technology have led to the consistent application of the TPACK framework within studies on instructional technology and technology-enhanced learning, significantly advancing the evolution of contemporary teacher education in technology integration. In this paper, we utilize the Teaching and Learning Knowledge of Subjects Based on Integrated Technology (TPACK) framework to administer a questionnaire survey to teacher trainees at Chinese colleges and universities. This survey aims to evaluate the current status of their integrated technology-based subject teaching and learning knowledge. Based on the research findings, we propose strategies aimed at enhancing the educational technology integration knowledge of students pursuing integrated technology courses in colleges and universities. Furthermore, we integrate the smart classroom setting to develop a comprehensive TPACK-integrated model teaching framework. Our final objective is to offer valuable references for the progress of modern teaching skills among education students in higher education institutions.
The COVID-19 pandemic occasioned significant changes in many aspects of human life. The education system is one of the most impacted sectors during the pandemic. With the contagious nature of the disease, governments around the world encouraged social distancing between individuals to prevent the spread of the virus. This led to the shutdown of many academic institutions, to avoid mass gatherings and overcrowded places. Developed and developing countries either postponed their academic activities or used digital technologies to reach learners remotely. The study examined the benefits of online learning during the COVID-19 pandemic. The participants for the study consist of 5 lecturers and 30 students from the ML Sultan Campus of the Durban University of Technology, South Africa. Data was collected using open-ended interviews. Content analysis was applied to analyze the data collected. Data was collected until it was saturated. Different ways were implemented to make online learning and teaching successful. The findings identified that the benefits of online learning were that it promotes independent learning, flexible learning adaptability and others.
This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
Copyright © by EnPress Publisher. All rights reserved.