This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
The study, focusing on Malaysian managers, employs a two-round Delphi research methodology to identify and rank variables influencing their emotional intelligence at work. The research is structured into five key areas, with factors ranked in ascending order of significance. Empathy and emotional resilience are deemed the most important, followed by emotional and self-awareness, work-life balance and stress management, social awareness and relationship management, learning and development, adaptability and continuous improvement, cultural and organizational dynamics, experience, and age. This study sheds light on the variables impacting Malaysian managers’ emotional intelligence skills and provides a ranking of key factors essential for successful development. It not only offers crucial guidance for personal and professional balance but also provides insightful recommendations for understanding and enhancing emotional intelligence skills in the workplace for Malaysian managers and organizations.
The growing interconnectedness of the world has led to a rise in cybersecurity risks. Although it is increasingly conventional to use technology to assist business transactions, exposure to these risks must be minimised to allow business owners to do transactions in a secure manner. While a wide range of studies have been undertaken regarding the effects of cyberattacks on several industries and sectors, However, very few studies have focused on the effects of cyberattacks on the educational sector, specifically higher educational institutions (HEIs) in West Africa. Consequently, this study developed a survey and distributed it to HEIs particularly universities in West Africa to examine the data architectures they employed, the cyberattacks they encountered during the COVID-19 pandemic period, and the role of data analysis in decision-making, as well as the countermeasures employed in identifying and preventing cyberattacks. A total of one thousand, one hundred and sixty-four (1164) responses were received from ninety-three (93) HEIs and analysed. According to the study’s findings, data-informed architecture was adopted by 71.8% of HEIs, data-driven architecture by 24.1%, and data-centric architecture by 4.1%, all of which were vulnerable to cyberattacks. In addition, there are further concerns around data analysis techniques, staff training gaps, and countermeasures for cyberattacks. The study’s conclusion includes suggestions for future research topics and recommendations for repelling cyberattacks in HEIs.
The mobile health market is expected to continue to grow that will make it harder for mobile application developer to compete. One of the most popular types of mobile health application is health and fitness applications. This application aims to modify user behavior; therefore, it requires user to use the system continuously in relatively longer period of time to effectively change user behavior. Thus, user satisfaction is essential and must be maintained to reach this goal. This study aims to define the mobile health application qualities that would influence user satisfaction level. Developer can priorities the most influential qualities when building their application. Quality dimensions would be explored by literature review and Google Play Store review and categorised using DeLone McLean IS Success Model. We identified 12 quality dimension that will furthered analysed using Kano Model. The data collecting was conducted with online form with 12 pairs of Kano two-dimensional questionnaires (n = 115). The results show that the important qualities of mobile health application are Privacy, Availability, Reliability, Ease of Use, Accuracy and Responsiveness, lack of these qualities would cause dissatisfaction from user. The developer might also consider to improve user interface and usefulness of the application to increase user satisfaction even though these qualities would not cause much of dissatisfaction
This research aims to investigate how technological innovation influences social sustainability via the mediating role of organizational innovation and digital entrepreneurship. This investigation employed a quantitative research approach and used data from survey questionnaires based on a set of suppositions evaluated using structural equation modeling. A total of 320 respondent companies from digital provider companies in Thailand. The findings of the research expose that technological innovation has a positive effect on organizational innovation and digital entrepreneurship. Both serve as mediators in the correlation between technology innovation and social sustainability. Moreover, this research will be beneficial for businesses that are implementing new technologies and innovation, considering their role in attaining both environmental and social sustainability.
Copyright © by EnPress Publisher. All rights reserved.